Optimal. Leaf size=25 \[ -7 x+\log ^2\left (1-x-\frac {-1+x^2}{4 \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 11.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (7 x-7 x^3\right ) \log (x)+\left (28 x-28 x^2\right ) \log ^2(x)+\left (2-2 x^2+4 x^2 \log (x)+8 x \log ^2(x)\right ) \log \left (\frac {1-x^2+(4-4 x) \log (x)}{4 \log (x)}\right )}{\left (-x+x^3\right ) \log (x)+\left (-4 x+4 x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\left (\left (7 x-7 x^3\right ) \log (x)\right )-\left (28 x-28 x^2\right ) \log ^2(x)-\left (2-2 x^2+4 x^2 \log (x)+8 x \log ^2(x)\right ) \log \left (\frac {1-x^2+(4-4 x) \log (x)}{4 \log (x)}\right )}{(1-x) x \log (x) (1+x+4 \log (x))} \, dx\\ &=\int \left (-7+\frac {2 \left (1-x^2+2 x^2 \log (x)+4 x \log ^2(x)\right ) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) x \log (x) (1+x+4 \log (x))}\right ) \, dx\\ &=-7 x+2 \int \frac {\left (1-x^2+2 x^2 \log (x)+4 x \log ^2(x)\right ) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) x \log (x) (1+x+4 \log (x))} \, dx\\ &=-7 x+2 \int \left (\frac {\left (1-x^2+2 x^2 \log (x)+4 x \log ^2(x)\right ) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) \log (x) (1+x+4 \log (x))}-\frac {\left (1-x^2+2 x^2 \log (x)+4 x \log ^2(x)\right ) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{x \log (x) (1+x+4 \log (x))}\right ) \, dx\\ &=-7 x+2 \int \frac {\left (1-x^2+2 x^2 \log (x)+4 x \log ^2(x)\right ) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) \log (x) (1+x+4 \log (x))} \, dx-2 \int \frac {\left (1-x^2+2 x^2 \log (x)+4 x \log ^2(x)\right ) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{x \log (x) (1+x+4 \log (x))} \, dx\\ &=-7 x-2 \int \left (\frac {2 x \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{1+x+4 \log (x)}+\frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{x \log (x) (1+x+4 \log (x))}-\frac {x \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{\log (x) (1+x+4 \log (x))}+\frac {4 \log (x) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{1+x+4 \log (x)}\right ) \, dx+2 \int \left (\frac {2 x^2 \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) (1+x+4 \log (x))}+\frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) \log (x) (1+x+4 \log (x))}-\frac {x^2 \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) \log (x) (1+x+4 \log (x))}+\frac {4 x \log (x) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) (1+x+4 \log (x))}\right ) \, dx\\ &=-7 x+2 \int \frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) \log (x) (1+x+4 \log (x))} \, dx-2 \int \frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{x \log (x) (1+x+4 \log (x))} \, dx+2 \int \frac {x \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{\log (x) (1+x+4 \log (x))} \, dx-2 \int \frac {x^2 \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) \log (x) (1+x+4 \log (x))} \, dx-4 \int \frac {x \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{1+x+4 \log (x)} \, dx+4 \int \frac {x^2 \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) (1+x+4 \log (x))} \, dx-8 \int \frac {\log (x) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{1+x+4 \log (x)} \, dx+8 \int \frac {x \log (x) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) (1+x+4 \log (x))} \, dx\\ &=-7 x+2 \int \frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) \log (x) (1+x+4 \log (x))} \, dx-2 \int \frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{x \log (x) (1+x+4 \log (x))} \, dx+2 \int \frac {x \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{\log (x) (1+x+4 \log (x))} \, dx-2 \int \left (\frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{\log (x) (1+x+4 \log (x))}+\frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) \log (x) (1+x+4 \log (x))}+\frac {x \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{\log (x) (1+x+4 \log (x))}\right ) \, dx-4 \int \frac {x \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{1+x+4 \log (x)} \, dx+4 \int \left (\frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{1+x+4 \log (x)}+\frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) (1+x+4 \log (x))}+\frac {x \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{1+x+4 \log (x)}\right ) \, dx-8 \int \frac {\log (x) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{1+x+4 \log (x)} \, dx+8 \int \left (\frac {\log (x) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{1+x+4 \log (x)}+\frac {\log (x) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) (1+x+4 \log (x))}\right ) \, dx\\ &=-7 x-2 \int \frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{\log (x) (1+x+4 \log (x))} \, dx-2 \int \frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{x \log (x) (1+x+4 \log (x))} \, dx+4 \int \frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{1+x+4 \log (x)} \, dx+4 \int \frac {\log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) (1+x+4 \log (x))} \, dx+8 \int \frac {\log (x) \log \left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right )}{(-1+x) (1+x+4 \log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 25, normalized size = 1.00 \begin {gather*} -7 x+\log ^2\left (-\frac {(-1+x) (1+x+4 \log (x))}{4 \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 25, normalized size = 1.00 \begin {gather*} \log \left (-\frac {x^{2} + 4 \, {\left (x - 1\right )} \log \relax (x) - 1}{4 \, \log \relax (x)}\right )^{2} - 7 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.41, size = 148, normalized size = 5.92 \begin {gather*} 2 \, {\left (\log \left (x + 4 \, \log \relax (x) + 1\right ) + \log \left (x - 1\right ) - \log \left (\log \relax (x)\right )\right )} \log \left (-x^{2} - 4 \, x \log \relax (x) + 4 \, \log \relax (x) + 1\right ) - 2 \, {\left (\log \left (x + 4 \, \log \relax (x) + 1\right ) + \log \left (x - 1\right )\right )} \log \left (x + 4 \, \log \relax (x) + 1\right ) - 4 \, \log \relax (2) \log \left (x + 4 \, \log \relax (x) + 1\right ) + 2 \, \log \left (x + 4 \, \log \relax (x) + 1\right )^{2} - 4 \, \log \relax (2) \log \left (x - 1\right ) - \log \left (x - 1\right )^{2} - 2 \, \log \left (x + 4 \, \log \relax (x) + 1\right ) \log \left (-x - 4 \, \log \relax (x) - 1\right ) + \log \left (-x - 4 \, \log \relax (x) - 1\right )^{2} + 4 \, \log \relax (2) \log \left (\log \relax (x)\right ) + \log \left (\log \relax (x)\right )^{2} - 7 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.05, size = 0, normalized size = 0.00 \[\int \frac {\left (8 x \ln \relax (x )^{2}+4 x^{2} \ln \relax (x )-2 x^{2}+2\right ) \ln \left (\frac {\left (-4 x +4\right ) \ln \relax (x )-x^{2}+1}{4 \ln \relax (x )}\right )+\left (-28 x^{2}+28 x \right ) \ln \relax (x )^{2}+\left (-7 x^{3}+7 x \right ) \ln \relax (x )}{\left (4 x^{2}-4 x \right ) \ln \relax (x )^{2}+\left (x^{3}-x \right ) \ln \relax (x )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 76, normalized size = 3.04 \begin {gather*} -2 \, {\left (2 \, \log \relax (2) - \log \left (-x + 1\right ) + \log \left (\log \relax (x)\right )\right )} \log \left (x + 4 \, \log \relax (x) + 1\right ) + \log \left (x + 4 \, \log \relax (x) + 1\right )^{2} - 2 \, {\left (2 \, \log \relax (2) + \log \left (\log \relax (x)\right )\right )} \log \left (-x + 1\right ) + \log \left (-x + 1\right )^{2} + 4 \, \log \relax (2) \log \left (\log \relax (x)\right ) + \log \left (\log \relax (x)\right )^{2} - 7 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.63, size = 29, normalized size = 1.16 \begin {gather*} {\ln \left (-\frac {\frac {\ln \relax (x)\,\left (4\,x-4\right )}{4}+\frac {x^2}{4}-\frac {1}{4}}{\ln \relax (x)}\right )}^2-7\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 27, normalized size = 1.08 \begin {gather*} - 7 x + \log {\left (\frac {- \frac {x^{2}}{4} + \frac {\left (4 - 4 x\right ) \log {\relax (x )}}{4} + \frac {1}{4}}{\log {\relax (x )}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________