Optimal. Leaf size=22 \[ \log \left (\frac {4 (-1+x)^2+x-\frac {3}{\log (3)}}{3+x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 26, normalized size of antiderivative = 1.18, number of steps used = 3, number of rules used = 2, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {2074, 628} \begin {gather*} \log \left (x^2 (-\log (81))+7 x \log (3)+3-\log (81)\right )-\log (x+3) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 628
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{-3-x}+\frac {(-7+8 x) \log (3)}{-3-7 x \log (3)+\log (81)+x^2 \log (81)}\right ) \, dx\\ &=-\log (3+x)+\log (3) \int \frac {-7+8 x}{-3-7 x \log (3)+\log (81)+x^2 \log (81)} \, dx\\ &=-\log (3+x)+\log \left (3+7 x \log (3)-\log (81)-x^2 \log (81)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.16, size = 154, normalized size = 7.00 \begin {gather*} \frac {-\frac {6 \tanh ^{-1}\left (\frac {-7 \log (3)+2 x \log (81)}{\sqrt {49 \log ^2(3)-4 (-3+\log (81)) \log (81)}}\right ) (-1+7 \log (3)) \left (28 \log ^2(3)+17 \log (3) \log (81)-6 \log ^2(81)\right )}{\log (81) \sqrt {49 \log ^2(3)-4 (-3+\log (81)) \log (81)}}+2 (3-61 \log (3)) \log (3+x)+\frac {\left (84 \log ^2(3)-3 \log (81)+\log (3) (-12+101 \log (81))\right ) \log \left (3+7 x \log (3)-\log (81)-x^2 \log (81)\right )}{\log (81)}}{2 (-3+21 \log (3)+10 \log (81))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 23, normalized size = 1.05 \begin {gather*} \log \left ({\left (4 \, x^{2} - 7 \, x + 4\right )} \log \relax (3) - 3\right ) - \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 28, normalized size = 1.27 \begin {gather*} \log \left ({\left | 4 \, x^{2} \log \relax (3) - 7 \, x \log \relax (3) + 4 \, \log \relax (3) - 3 \right |}\right ) - \log \left ({\left | x + 3 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 27, normalized size = 1.23
method | result | size |
default | \(\ln \left (4 x^{2} \ln \relax (3)-7 x \ln \relax (3)+4 \ln \relax (3)-3\right )-\ln \left (3+x \right )\) | \(27\) |
norman | \(\ln \left (4 x^{2} \ln \relax (3)-7 x \ln \relax (3)+4 \ln \relax (3)-3\right )-\ln \left (3+x \right )\) | \(27\) |
risch | \(-\ln \left (-3-x \right )+\ln \left (-4 x^{2} \ln \relax (3)+7 x \ln \relax (3)-4 \ln \relax (3)+3\right )\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 26, normalized size = 1.18 \begin {gather*} \log \left (4 \, x^{2} \log \relax (3) - 7 \, x \log \relax (3) + 4 \, \log \relax (3) - 3\right ) - \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 26, normalized size = 1.18 \begin {gather*} \ln \left (-8\,\ln \relax (3)\,x^2+14\,\ln \relax (3)\,x-8\,\ln \relax (3)+6\right )-\ln \left (x+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.56, size = 26, normalized size = 1.18 \begin {gather*} - \log {\left (x + 3 \right )} + \log {\left (x^{2} - \frac {7 x}{4} + \frac {-3 + 4 \log {\relax (3 )}}{4 \log {\relax (3 )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________