Optimal. Leaf size=20 \[ \frac {x \log (3+x)}{7 x-\log ^4(5 x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {7 x^2+(12+4 x) \log ^3(5 x) \log (3+x)+\log ^4(5 x) (-x+(-3-x) \log (3+x))}{147 x^2+49 x^3+\left (-42 x-14 x^2\right ) \log ^4(5 x)+(3+x) \log ^8(5 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {7 x^2+4 (3+x) \log ^3(5 x) \log (3+x)-\log ^4(5 x) (x+(3+x) \log (3+x))}{(3+x) \left (7 x-\log ^4(5 x)\right )^2} \, dx\\ &=\int \left (\frac {x}{(3+x) \left (7 x-\log ^4(5 x)\right )}-\frac {(-4+\log (5 x)) \log ^3(5 x) \log (3+x)}{\left (-7 x+\log ^4(5 x)\right )^2}\right ) \, dx\\ &=\int \frac {x}{(3+x) \left (7 x-\log ^4(5 x)\right )} \, dx-\int \frac {(-4+\log (5 x)) \log ^3(5 x) \log (3+x)}{\left (-7 x+\log ^4(5 x)\right )^2} \, dx\\ &=\int \left (\frac {1}{7 x-\log ^4(5 x)}-\frac {3}{(3+x) \left (7 x-\log ^4(5 x)\right )}\right ) \, dx-\int \left (-\frac {4 \log ^3(5 x) \log (3+x)}{\left (-7 x+\log ^4(5 x)\right )^2}+\frac {\log ^4(5 x) \log (3+x)}{\left (-7 x+\log ^4(5 x)\right )^2}\right ) \, dx\\ &=-\left (3 \int \frac {1}{(3+x) \left (7 x-\log ^4(5 x)\right )} \, dx\right )+4 \int \frac {\log ^3(5 x) \log (3+x)}{\left (-7 x+\log ^4(5 x)\right )^2} \, dx+\int \frac {1}{7 x-\log ^4(5 x)} \, dx-\int \frac {\log ^4(5 x) \log (3+x)}{\left (-7 x+\log ^4(5 x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 20, normalized size = 1.00 \begin {gather*} \frac {x \log (3+x)}{7 x-\log ^4(5 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 19, normalized size = 0.95 \begin {gather*} -\frac {x \log \left (x + 3\right )}{\log \left (5 \, x\right )^{4} - 7 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 19, normalized size = 0.95 \begin {gather*} -\frac {x \log \left (x + 3\right )}{\log \left (5 \, x\right )^{4} - 7 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 21, normalized size = 1.05
method | result | size |
risch | \(\frac {\ln \left (3+x \right ) x}{7 x -\ln \left (5 x \right )^{4}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 47, normalized size = 2.35 \begin {gather*} -\frac {x \log \left (x + 3\right )}{\log \relax (5)^{4} + 4 \, \log \relax (5)^{3} \log \relax (x) + 6 \, \log \relax (5)^{2} \log \relax (x)^{2} + 4 \, \log \relax (5) \log \relax (x)^{3} + \log \relax (x)^{4} - 7 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.38, size = 20, normalized size = 1.00 \begin {gather*} \frac {x\,\ln \left (x+3\right )}{7\,x-{\ln \left (5\,x\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 15, normalized size = 0.75 \begin {gather*} \frac {x \log {\left (x + 3 \right )}}{7 x - \log {\left (5 x \right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________