Optimal. Leaf size=28 \[ x \left (2+e^{3 e^{\left (25^{\frac {1}{2+\frac {x}{3+x}}}+x\right )^2}}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 69.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8+16 x+10 x^2+2 x^3+\exp \left (3 \exp \left (25^{\frac {2 (3+x)}{6+3 x}}+2\ 25^{\frac {3+x}{6+3 x}} x+x^2\right )\right ) \left (4+4 x+x^2+\exp \left (25^{\frac {2 (3+x)}{6+3 x}}+2\ 25^{\frac {3+x}{6+3 x}} x+x^2\right ) \left (24 x^2+24 x^3+6 x^4-2\ 25^{\frac {2 (3+x)}{6+3 x}} x \log (25)+25^{\frac {3+x}{6+3 x}} \left (24 x+24 x^2+6 x^3-2 x^2 \log (25)\right )\right )\right )}{4+4 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8+16 x+10 x^2+2 x^3+\exp \left (3 \exp \left (25^{\frac {2 (3+x)}{6+3 x}}+2\ 25^{\frac {3+x}{6+3 x}} x+x^2\right )\right ) \left (4+4 x+x^2+\exp \left (25^{\frac {2 (3+x)}{6+3 x}}+2\ 25^{\frac {3+x}{6+3 x}} x+x^2\right ) \left (24 x^2+24 x^3+6 x^4-2\ 25^{\frac {2 (3+x)}{6+3 x}} x \log (25)+25^{\frac {3+x}{6+3 x}} \left (24 x+24 x^2+6 x^3-2 x^2 \log (25)\right )\right )\right )}{(2+x)^2} \, dx\\ &=\int \frac {8+16 x+10 x^2+2 x^3+e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}} \left (4+4 x+x^2+2 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2} x \left (25^{\frac {3+x}{6+3 x}}+x\right ) \left (12+12 x+3 x^2-25^{\frac {3+x}{6+3 x}} \log (25)\right )\right )}{(2+x)^2} \, dx\\ &=\int \left (\frac {8}{(2+x)^2}+\frac {4 e^{3 e^{\left (25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}}+x\right )^2}}}{(2+x)^2}+\frac {16 x}{(2+x)^2}+\frac {4 e^{3 e^{\left (25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}}+x\right )^2}} x}{(2+x)^2}+\frac {10 x^2}{(2+x)^2}+\frac {e^{3 e^{\left (25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}}+x\right )^2}} x^2}{(2+x)^2}+\frac {2 x^3}{(2+x)^2}+\frac {2 \exp \left (3 e^{\left (25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}}+x\right )^2\right ) x \left (25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}}+x\right ) \left (12+12 x+3 x^2-25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}} \log (25)\right )}{(2+x)^2}\right ) \, dx\\ &=-\frac {8}{2+x}+2 \int \frac {x^3}{(2+x)^2} \, dx+2 \int \frac {\exp \left (3 e^{\left (25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}}+x\right )^2\right ) x \left (25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}}+x\right ) \left (12+12 x+3 x^2-25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}} \log (25)\right )}{(2+x)^2} \, dx+4 \int \frac {e^{3 e^{\left (25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}}+x\right )^2}}}{(2+x)^2} \, dx+4 \int \frac {e^{3 e^{\left (25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}}+x\right )^2}} x}{(2+x)^2} \, dx+10 \int \frac {x^2}{(2+x)^2} \, dx+16 \int \frac {x}{(2+x)^2} \, dx+\int \frac {e^{3 e^{\left (25^{\frac {3}{6+3 x}+\frac {x}{6+3 x}}+x\right )^2}} x^2}{(2+x)^2} \, dx\\ &=-\frac {8}{2+x}+2 \int \left (-4+x-\frac {8}{(2+x)^2}+\frac {12}{2+x}\right ) \, dx+2 \int \frac {\exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) x \left (25^{\frac {3+x}{6+3 x}}+x\right ) \left (12+12 x+3 x^2-25^{\frac {3+x}{6+3 x}} \log (25)\right )}{(2+x)^2} \, dx+4 \int \frac {e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}}{(2+x)^2} \, dx+4 \int \frac {e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}} x}{(2+x)^2} \, dx+10 \int \left (1+\frac {4}{(2+x)^2}-\frac {4}{2+x}\right ) \, dx+16 \int \left (-\frac {2}{(2+x)^2}+\frac {1}{2+x}\right ) \, dx+\int \frac {e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}} x^2}{(2+x)^2} \, dx\\ &=2 x+x^2+2 \int \left (3 \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) x^2+\frac {5^{\frac {2 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) x \left (12+3 x^2+x (12-\log (25))\right )}{(2+x)^2}-\frac {5^{\frac {4 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) x \log (25)}{(2+x)^2}\right ) \, dx+4 \int \frac {e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}}{(2+x)^2} \, dx+4 \int \left (-\frac {2 e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}}{(2+x)^2}+\frac {e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}}{2+x}\right ) \, dx+\int \left (e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}+\frac {4 e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}}{(2+x)^2}-\frac {4 e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}}{2+x}\right ) \, dx\\ &=2 x+x^2+2 \int \frac {5^{\frac {2 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) x \left (12+3 x^2+x (12-\log (25))\right )}{(2+x)^2} \, dx+2 \left (4 \int \frac {e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}}{(2+x)^2} \, dx\right )+6 \int \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) x^2 \, dx-8 \int \frac {e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}}{(2+x)^2} \, dx-(2 \log (25)) \int \frac {5^{\frac {4 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) x}{(2+x)^2} \, dx+\int e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}} \, dx\\ &=2 x+x^2+2 \int \left (3\ 5^{\frac {2 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) x-5^{\frac {2 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) \log (25)-\frac {4\ 5^{\frac {2 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) \log (25)}{(2+x)^2}+\frac {4\ 5^{\frac {2 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) \log (25)}{2+x}\right ) \, dx+2 \left (4 \int \frac {e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}}{(2+x)^2} \, dx\right )+6 \int \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) x^2 \, dx-8 \int \frac {e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}}{(2+x)^2} \, dx-(2 \log (25)) \int \left (-\frac {2\ 5^{\frac {4 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right )}{(2+x)^2}+\frac {5^{\frac {4 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right )}{2+x}\right ) \, dx+\int e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}} \, dx\\ &=2 x+x^2+2 \left (4 \int \frac {e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}}{(2+x)^2} \, dx\right )+6 \int 5^{\frac {2 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) x \, dx+6 \int \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) x^2 \, dx-8 \int \frac {e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}}}{(2+x)^2} \, dx-(2 \log (25)) \int 5^{\frac {2 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right ) \, dx-(2 \log (25)) \int \frac {5^{\frac {4 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right )}{2+x} \, dx+(4 \log (25)) \int \frac {5^{\frac {4 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right )}{(2+x)^2} \, dx-(8 \log (25)) \int \frac {5^{\frac {2 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right )}{(2+x)^2} \, dx+(8 \log (25)) \int \frac {5^{\frac {2 (3+x)}{3 (2+x)}} \exp \left (3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}+\left (25^{\frac {3+x}{6+3 x}}+x\right )^2\right )}{2+x} \, dx+\int e^{3 e^{\left (25^{\frac {3+x}{6+3 x}}+x\right )^2}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.55, size = 29, normalized size = 1.04 \begin {gather*} x \left (2+e^{3 e^{\left (5^{\frac {2 (3+x)}{3 (2+x)}}+x\right )^2}}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.03, size = 44, normalized size = 1.57 \begin {gather*} x^{2} + x e^{\left (3 \, e^{\left (2 \cdot 5^{\frac {2 \, {\left (x + 3\right )}}{3 \, {\left (x + 2\right )}}} x + x^{2} + 5^{\frac {4 \, {\left (x + 3\right )}}{3 \, {\left (x + 2\right )}}}\right )}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, x^{3} + 10 \, x^{2} + {\left (x^{2} + 2 \, {\left (3 \, x^{4} + 12 \, x^{3} - 2 \cdot 5^{\frac {4 \, {\left (x + 3\right )}}{3 \, {\left (x + 2\right )}}} x \log \relax (5) + {\left (3 \, x^{3} - 2 \, x^{2} \log \relax (5) + 12 \, x^{2} + 12 \, x\right )} 5^{\frac {2 \, {\left (x + 3\right )}}{3 \, {\left (x + 2\right )}}} + 12 \, x^{2}\right )} e^{\left (2 \cdot 5^{\frac {2 \, {\left (x + 3\right )}}{3 \, {\left (x + 2\right )}}} x + x^{2} + 5^{\frac {4 \, {\left (x + 3\right )}}{3 \, {\left (x + 2\right )}}}\right )} + 4 \, x + 4\right )} e^{\left (3 \, e^{\left (2 \cdot 5^{\frac {2 \, {\left (x + 3\right )}}{3 \, {\left (x + 2\right )}}} x + x^{2} + 5^{\frac {4 \, {\left (x + 3\right )}}{3 \, {\left (x + 2\right )}}}\right )}\right )} + 16 \, x + 8}{x^{2} + 4 \, x + 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 30, normalized size = 1.07
method | result | size |
risch | \(x^{2}+x \,{\mathrm e}^{3 \,{\mathrm e}^{\left (5^{\frac {2+\frac {2 x}{3}}{2+x}}+x \right )^{2}}}+2 x\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{2} + x e^{\left (3 \, e^{\left (2 \cdot 5^{\frac {2}{3}} 5^{\frac {2}{3 \, {\left (x + 2\right )}}} x + x^{2} + 5 \cdot 5^{\frac {1}{3}} 5^{\frac {4}{3 \, {\left (x + 2\right )}}}\right )}\right )} + 2 \, x - \int 0\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.75, size = 45, normalized size = 1.61 \begin {gather*} x\,\left (x+{\mathrm {e}}^{3\,{\mathrm {e}}^{2\,5^{\frac {2\,\left (x+3\right )}{3\,\left (x+2\right )}}\,x}\,{\mathrm {e}}^{5^{\frac {4\,\left (x+3\right )}{3\,\left (x+2\right )}}}\,{\mathrm {e}}^{x^2}}+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________