Optimal. Leaf size=30 \[ x+2 \left (e^{\frac {1}{x (5+x)^2+3 (3-\log (x))}}+x-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 6.76, antiderivative size = 31, normalized size of antiderivative = 1.03, number of steps used = 20, number of rules used = 4, integrand size = 173, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {6688, 6742, 6706, 43} \begin {gather*} 2 e^{\frac {1}{x^3+10 x^2+25 x-3 \log (x)+9}}+3 x-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 6688
Rule 6706
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(-2+3 x) \left (9+25 x+10 x^2+x^3\right )^2-2 e^{\frac {1}{9+25 x+10 x^2+x^3-3 \log (x)}} \left (-3+25 x+20 x^2+3 x^3\right )-6 \left (-18-23 x+55 x^2+28 x^3+3 x^4\right ) \log (x)+9 (-2+3 x) \log ^2(x)}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\\ &=\int \left (\frac {(-2+3 x) \left (9+25 x+10 x^2+x^3\right )^2}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}-\frac {2 e^{\frac {1}{9+25 x+10 x^2+x^3-3 \log (x)}} \left (-3+25 x+20 x^2+3 x^3\right )}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}-\frac {6 (-2+3 x) \left (9+25 x+10 x^2+x^3\right ) \log (x)}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {9 (-2+3 x) \log ^2(x)}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {1}{9+25 x+10 x^2+x^3-3 \log (x)}} \left (-3+25 x+20 x^2+3 x^3\right )}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\right )-6 \int \frac {(-2+3 x) \left (9+25 x+10 x^2+x^3\right ) \log (x)}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+9 \int \frac {(-2+3 x) \log ^2(x)}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+\int \frac {(-2+3 x) \left (9+25 x+10 x^2+x^3\right )^2}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\\ &=2 e^{\frac {1}{9+25 x+10 x^2+x^3-3 \log (x)}}-6 \int \left (\frac {(-2+3 x) \left (9+25 x+10 x^2+x^3\right )^2}{3 x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}-\frac {(-2+3 x) \left (9+25 x+10 x^2+x^3\right )}{3 x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )}\right ) \, dx+9 \int \left (\frac {-2+3 x}{9 x}+\frac {(-2+3 x) \left (9+25 x+10 x^2+x^3\right )^2}{9 x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}-\frac {2 \left (-18-23 x+55 x^2+28 x^3+3 x^4\right )}{9 x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )}\right ) \, dx+\int \left (-\frac {657}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}-\frac {162}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}-\frac {260 x}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {1379 x^2}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {1254 x^3}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {410 x^4}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {58 x^5}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {3 x^6}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}\right ) \, dx\\ &=2 e^{\frac {1}{9+25 x+10 x^2+x^3-3 \log (x)}}-2 \int \frac {(-2+3 x) \left (9+25 x+10 x^2+x^3\right )^2}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+2 \int \frac {(-2+3 x) \left (9+25 x+10 x^2+x^3\right )}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )} \, dx-2 \int \frac {-18-23 x+55 x^2+28 x^3+3 x^4}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )} \, dx+3 \int \frac {x^6}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+58 \int \frac {x^5}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx-162 \int \frac {1}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx-260 \int \frac {x}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+410 \int \frac {x^4}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx-657 \int \frac {1}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+1254 \int \frac {x^3}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+1379 \int \frac {x^2}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+\int \frac {-2+3 x}{x} \, dx+\int \frac {(-2+3 x) \left (9+25 x+10 x^2+x^3\right )^2}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\\ &=2 e^{\frac {1}{9+25 x+10 x^2+x^3-3 \log (x)}}-2 \int \left (-\frac {657}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}-\frac {162}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}-\frac {260 x}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {1379 x^2}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {1254 x^3}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {410 x^4}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {58 x^5}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {3 x^6}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}\right ) \, dx+3 \int \frac {x^6}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+58 \int \frac {x^5}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx-162 \int \frac {1}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx-260 \int \frac {x}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+410 \int \frac {x^4}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx-657 \int \frac {1}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+1254 \int \frac {x^3}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+1379 \int \frac {x^2}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+\int \left (3-\frac {2}{x}\right ) \, dx+\int \left (-\frac {657}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}-\frac {162}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}-\frac {260 x}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {1379 x^2}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {1254 x^3}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {410 x^4}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {58 x^5}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}+\frac {3 x^6}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2}\right ) \, dx\\ &=2 e^{\frac {1}{9+25 x+10 x^2+x^3-3 \log (x)}}+3 x-2 \log (x)+2 \left (3 \int \frac {x^6}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\right )-6 \int \frac {x^6}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+2 \left (58 \int \frac {x^5}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\right )-116 \int \frac {x^5}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx-2 \left (162 \int \frac {1}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\right )-2 \left (260 \int \frac {x}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\right )+324 \int \frac {1}{x \left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+2 \left (410 \int \frac {x^4}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\right )+520 \int \frac {x}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx-2 \left (657 \int \frac {1}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\right )-820 \int \frac {x^4}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+2 \left (1254 \int \frac {x^3}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\right )+1314 \int \frac {1}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx+2 \left (1379 \int \frac {x^2}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\right )-2508 \int \frac {x^3}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx-2758 \int \frac {x^2}{\left (9+25 x+10 x^2+x^3-3 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 31, normalized size = 1.03 \begin {gather*} 2 e^{\frac {1}{9+25 x+10 x^2+x^3-3 \log (x)}}+3 x-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 30, normalized size = 1.00 \begin {gather*} 3 \, x + 2 \, e^{\left (\frac {1}{x^{3} + 10 \, x^{2} + 25 \, x - 3 \, \log \relax (x) + 9}\right )} - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 30, normalized size = 1.00 \begin {gather*} 3 \, x + 2 \, e^{\left (\frac {1}{x^{3} + 10 \, x^{2} + 25 \, x - 3 \, \log \relax (x) + 9}\right )} - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 35, normalized size = 1.17
method | result | size |
risch | \(3 x -2 \ln \relax (x )+2 \,{\mathrm e}^{-\frac {1}{3 \ln \relax (x )-x^{3}-10 x^{2}-25 x -9}}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 53, normalized size = 1.77 \begin {gather*} {\left (3 \, x e^{\left (-\frac {1}{x^{3} + 10 \, x^{2} + 25 \, x - 3 \, \log \relax (x) + 9}\right )} + 2\right )} e^{\left (\frac {1}{x^{3} + 10 \, x^{2} + 25 \, x - 3 \, \log \relax (x) + 9}\right )} - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.68, size = 30, normalized size = 1.00 \begin {gather*} 3\,x+2\,{\mathrm {e}}^{\frac {1}{25\,x-3\,\ln \relax (x)+10\,x^2+x^3+9}}-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.86, size = 31, normalized size = 1.03 \begin {gather*} 3 x - 2 \log {\relax (x )} + 2 e^{- \frac {1}{- x^{3} - 10 x^{2} - 25 x + 3 \log {\relax (x )} - 9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________