Optimal. Leaf size=31 \[ -4+x^2 \left (e^{3 \left (-x+x^2 \left (-x+e^{-x} x\right )\right )}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-x} \left (3 e^x x^2+\exp \left (e^{-x} \left (3 x^3+e^x \left (-3 x-3 x^3\right )\right )\right ) \left (9 x^4-3 x^5+e^x \left (2 x-3 x^2-9 x^4\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int x \left (3 x-e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} \left (3 (-3+x) x^3+e^x \left (-2+3 x+9 x^3\right )\right )\right ) \, dx\\ &=\int \left (3 x^2-e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} x \left (-2 e^x+3 e^x x-9 x^3+9 e^x x^3+3 x^4\right )\right ) \, dx\\ &=x^3-\int e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} x \left (-2 e^x+3 e^x x-9 x^3+9 e^x x^3+3 x^4\right ) \, dx\\ &=x^3-\int \left (3 e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} (-3+x) x^4+e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x \left (-2+3 x+9 x^3\right )\right ) \, dx\\ &=x^3-3 \int e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} (-3+x) x^4 \, dx-\int e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x \left (-2+3 x+9 x^3\right ) \, dx\\ &=x^3-3 \int \left (-3 e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} x^4+e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} x^5\right ) \, dx-\int \left (-2 e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x+3 e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x^2+9 e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x^4\right ) \, dx\\ &=x^3+2 \int e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x \, dx-3 \int e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x^2 \, dx-3 \int e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} x^5 \, dx+9 \int e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} x^4 \, dx-9 \int e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x^4 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.00, size = 25, normalized size = 0.81 \begin {gather*} x^2 \left (e^{-3 x+\left (-3+3 e^{-x}\right ) x^3}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 28, normalized size = 0.90 \begin {gather*} x^{3} + x^{2} e^{\left (3 \, {\left (x^{3} - {\left (x^{3} + x\right )} e^{x}\right )} e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (3 \, x^{2} e^{x} - {\left (3 \, x^{5} - 9 \, x^{4} + {\left (9 \, x^{4} + 3 \, x^{2} - 2 \, x\right )} e^{x}\right )} e^{\left (3 \, {\left (x^{3} - {\left (x^{3} + x\right )} e^{x}\right )} e^{\left (-x\right )}\right )}\right )} e^{\left (-x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 31, normalized size = 1.00
method | result | size |
risch | \(x^{3}+x^{2} {\mathrm e}^{-3 x \left ({\mathrm e}^{x} x^{2}-x^{2}+{\mathrm e}^{x}\right ) {\mathrm e}^{-x}}\) | \(31\) |
norman | \(\left ({\mathrm e}^{x} x^{3}+{\mathrm e}^{x} x^{2} {\mathrm e}^{\left (\left (-3 x^{3}-3 x \right ) {\mathrm e}^{x}+3 x^{3}\right ) {\mathrm e}^{-x}}\right ) {\mathrm e}^{-x}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 27, normalized size = 0.87 \begin {gather*} x^{3} + x^{2} e^{\left (3 \, x^{3} e^{\left (-x\right )} - 3 \, x^{3} - 3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.75, size = 28, normalized size = 0.90 \begin {gather*} x^3+x^2\,{\mathrm {e}}^{-3\,x}\,{\mathrm {e}}^{-3\,x^3}\,{\mathrm {e}}^{3\,x^3\,{\mathrm {e}}^{-x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 29, normalized size = 0.94 \begin {gather*} x^{3} + x^{2} e^{\left (3 x^{3} + \left (- 3 x^{3} - 3 x\right ) e^{x}\right ) e^{- x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________