3.101.86 \(\int e^{-x} (3 e^x x^2+e^{e^{-x} (3 x^3+e^x (-3 x-3 x^3))} (9 x^4-3 x^5+e^x (2 x-3 x^2-9 x^4))) \, dx\)

Optimal. Leaf size=31 \[ -4+x^2 \left (e^{3 \left (-x+x^2 \left (-x+e^{-x} x\right )\right )}+x\right ) \]

________________________________________________________________________________________

Rubi [F]  time = 2.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-x} \left (3 e^x x^2+\exp \left (e^{-x} \left (3 x^3+e^x \left (-3 x-3 x^3\right )\right )\right ) \left (9 x^4-3 x^5+e^x \left (2 x-3 x^2-9 x^4\right )\right )\right ) \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(3*E^x*x^2 + E^((3*x^3 + E^x*(-3*x - 3*x^3))/E^x)*(9*x^4 - 3*x^5 + E^x*(2*x - 3*x^2 - 9*x^4)))/E^x,x]

[Out]

x^3 + 2*Defer[Int][E^(-3*x + (-3 + 3/E^x)*x^3)*x, x] - 3*Defer[Int][E^(-3*x + (-3 + 3/E^x)*x^3)*x^2, x] + 9*De
fer[Int][E^(-4*x + (-3 + 3/E^x)*x^3)*x^4, x] - 9*Defer[Int][E^(-3*x + (-3 + 3/E^x)*x^3)*x^4, x] - 3*Defer[Int]
[E^(-4*x + (-3 + 3/E^x)*x^3)*x^5, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int x \left (3 x-e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} \left (3 (-3+x) x^3+e^x \left (-2+3 x+9 x^3\right )\right )\right ) \, dx\\ &=\int \left (3 x^2-e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} x \left (-2 e^x+3 e^x x-9 x^3+9 e^x x^3+3 x^4\right )\right ) \, dx\\ &=x^3-\int e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} x \left (-2 e^x+3 e^x x-9 x^3+9 e^x x^3+3 x^4\right ) \, dx\\ &=x^3-\int \left (3 e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} (-3+x) x^4+e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x \left (-2+3 x+9 x^3\right )\right ) \, dx\\ &=x^3-3 \int e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} (-3+x) x^4 \, dx-\int e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x \left (-2+3 x+9 x^3\right ) \, dx\\ &=x^3-3 \int \left (-3 e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} x^4+e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} x^5\right ) \, dx-\int \left (-2 e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x+3 e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x^2+9 e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x^4\right ) \, dx\\ &=x^3+2 \int e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x \, dx-3 \int e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x^2 \, dx-3 \int e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} x^5 \, dx+9 \int e^{-4 x+\left (-3+3 e^{-x}\right ) x^3} x^4 \, dx-9 \int e^{-3 x+\left (-3+3 e^{-x}\right ) x^3} x^4 \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 1.00, size = 25, normalized size = 0.81 \begin {gather*} x^2 \left (e^{-3 x+\left (-3+3 e^{-x}\right ) x^3}+x\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(3*E^x*x^2 + E^((3*x^3 + E^x*(-3*x - 3*x^3))/E^x)*(9*x^4 - 3*x^5 + E^x*(2*x - 3*x^2 - 9*x^4)))/E^x,x
]

[Out]

x^2*(E^(-3*x + (-3 + 3/E^x)*x^3) + x)

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 28, normalized size = 0.90 \begin {gather*} x^{3} + x^{2} e^{\left (3 \, {\left (x^{3} - {\left (x^{3} + x\right )} e^{x}\right )} e^{\left (-x\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-9*x^4-3*x^2+2*x)*exp(x)-3*x^5+9*x^4)*exp(((-3*x^3-3*x)*exp(x)+3*x^3)/exp(x))+3*exp(x)*x^2)/exp(x
),x, algorithm="fricas")

[Out]

x^3 + x^2*e^(3*(x^3 - (x^3 + x)*e^x)*e^(-x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (3 \, x^{2} e^{x} - {\left (3 \, x^{5} - 9 \, x^{4} + {\left (9 \, x^{4} + 3 \, x^{2} - 2 \, x\right )} e^{x}\right )} e^{\left (3 \, {\left (x^{3} - {\left (x^{3} + x\right )} e^{x}\right )} e^{\left (-x\right )}\right )}\right )} e^{\left (-x\right )}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-9*x^4-3*x^2+2*x)*exp(x)-3*x^5+9*x^4)*exp(((-3*x^3-3*x)*exp(x)+3*x^3)/exp(x))+3*exp(x)*x^2)/exp(x
),x, algorithm="giac")

[Out]

integrate((3*x^2*e^x - (3*x^5 - 9*x^4 + (9*x^4 + 3*x^2 - 2*x)*e^x)*e^(3*(x^3 - (x^3 + x)*e^x)*e^(-x)))*e^(-x),
 x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 31, normalized size = 1.00




method result size



risch \(x^{3}+x^{2} {\mathrm e}^{-3 x \left ({\mathrm e}^{x} x^{2}-x^{2}+{\mathrm e}^{x}\right ) {\mathrm e}^{-x}}\) \(31\)
norman \(\left ({\mathrm e}^{x} x^{3}+{\mathrm e}^{x} x^{2} {\mathrm e}^{\left (\left (-3 x^{3}-3 x \right ) {\mathrm e}^{x}+3 x^{3}\right ) {\mathrm e}^{-x}}\right ) {\mathrm e}^{-x}\) \(43\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-9*x^4-3*x^2+2*x)*exp(x)-3*x^5+9*x^4)*exp(((-3*x^3-3*x)*exp(x)+3*x^3)/exp(x))+3*exp(x)*x^2)/exp(x),x,me
thod=_RETURNVERBOSE)

[Out]

x^3+x^2*exp(-3*x*(exp(x)*x^2-x^2+exp(x))*exp(-x))

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 27, normalized size = 0.87 \begin {gather*} x^{3} + x^{2} e^{\left (3 \, x^{3} e^{\left (-x\right )} - 3 \, x^{3} - 3 \, x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-9*x^4-3*x^2+2*x)*exp(x)-3*x^5+9*x^4)*exp(((-3*x^3-3*x)*exp(x)+3*x^3)/exp(x))+3*exp(x)*x^2)/exp(x
),x, algorithm="maxima")

[Out]

x^3 + x^2*e^(3*x^3*e^(-x) - 3*x^3 - 3*x)

________________________________________________________________________________________

mupad [B]  time = 8.75, size = 28, normalized size = 0.90 \begin {gather*} x^3+x^2\,{\mathrm {e}}^{-3\,x}\,{\mathrm {e}}^{-3\,x^3}\,{\mathrm {e}}^{3\,x^3\,{\mathrm {e}}^{-x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(-x)*(3*x^2*exp(x) - exp(-exp(-x)*(exp(x)*(3*x + 3*x^3) - 3*x^3))*(3*x^5 - 9*x^4 + exp(x)*(3*x^2 - 2*x
+ 9*x^4))),x)

[Out]

x^3 + x^2*exp(-3*x)*exp(-3*x^3)*exp(3*x^3*exp(-x))

________________________________________________________________________________________

sympy [A]  time = 0.27, size = 29, normalized size = 0.94 \begin {gather*} x^{3} + x^{2} e^{\left (3 x^{3} + \left (- 3 x^{3} - 3 x\right ) e^{x}\right ) e^{- x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-9*x**4-3*x**2+2*x)*exp(x)-3*x**5+9*x**4)*exp(((-3*x**3-3*x)*exp(x)+3*x**3)/exp(x))+3*exp(x)*x**2
)/exp(x),x)

[Out]

x**3 + x**2*exp((3*x**3 + (-3*x**3 - 3*x)*exp(x))*exp(-x))

________________________________________________________________________________________