Optimal. Leaf size=30 \[ 3-e^{\left (-\frac {e}{x^2}+\frac {2 e^{25}}{x}-\log \left (x^2\right )\right )^2}+x \]
________________________________________________________________________________________
Rubi [F] time = 9.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^5+\exp \left (\frac {e^2-4 e^{26} x+4 e^{50} x^2+\left (2 e x^2-4 e^{25} x^3\right ) \log \left (x^2\right )+x^4 \log ^2\left (x^2\right )}{x^4}\right ) \left (4 e^2-4 e x^2+8 e^{50} x^2+e^{25} \left (-12 e x+8 x^3\right )+\left (4 e x^2-4 e^{25} x^3-4 x^4\right ) \log \left (x^2\right )\right )}{x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {4 e^{\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}} \left (e-e^{25} x-x^2\right ) \left (e-2 e^{25} x+x^2 \log \left (x^2\right )\right )}{x^5}\right ) \, dx\\ &=x+4 \int \frac {e^{\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}} \left (e-e^{25} x-x^2\right ) \left (e-2 e^{25} x+x^2 \log \left (x^2\right )\right )}{x^5} \, dx\\ &=x+4 \int \left (\frac {e^{1+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}} \left (-1+2 e^{24} x\right ) \left (-e+e^{25} x+x^2\right )}{x^5}-\frac {e^{\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}} \left (-e+e^{25} x+x^2\right ) \log \left (x^2\right )}{x^3}\right ) \, dx\\ &=x+4 \int \frac {e^{1+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}} \left (-1+2 e^{24} x\right ) \left (-e+e^{25} x+x^2\right )}{x^5} \, dx-4 \int \frac {e^{\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}} \left (-e+e^{25} x+x^2\right ) \log \left (x^2\right )}{x^3} \, dx\\ &=x+4 \int \left (\frac {e^{2+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}}}{x^5}-\frac {3 e^{26+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}}}{x^4}+\frac {e^{1+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (-1+2 e^{49}\right ) \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}}}{x^3}+2 e^{25+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{-1+\frac {2 e-4 e^{25} x}{x^2}}\right ) \, dx-4 \int \left (-\frac {e^{1+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}} \log \left (x^2\right )}{x^3}+\frac {e^{\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}} \log \left (x^2\right )}{x}+e^{25+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{-1+\frac {2 e-4 e^{25} x}{x^2}} \log \left (x^2\right )\right ) \, dx\\ &=x+4 \int \frac {e^{2+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}}}{x^5} \, dx+4 \int \frac {e^{1+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}} \log \left (x^2\right )}{x^3} \, dx-4 \int \frac {e^{\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}} \log \left (x^2\right )}{x} \, dx-4 \int e^{25+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{-1+\frac {2 e-4 e^{25} x}{x^2}} \log \left (x^2\right ) \, dx+8 \int e^{25+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{-1+\frac {2 e-4 e^{25} x}{x^2}} \, dx-12 \int \frac {e^{26+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}}}{x^4} \, dx-\left (4 \left (1-2 e^{49}\right )\right ) \int \frac {e^{1+\frac {e^2 \left (1-2 e^{24} x\right )^2}{x^4}+\log ^2\left (x^2\right )} \left (x^2\right )^{\frac {2 e-4 e^{25} x}{x^2}}}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.84, size = 54, normalized size = 1.80 \begin {gather*} x-e^{\frac {e^2}{x^4}-\frac {4 e^{26}}{x^3}+\frac {4 e^{50}}{x^2}+\log ^2\left (x^2\right )} \left (x^2\right )^{-\frac {2 e \left (-1+2 e^{24} x\right )}{x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 55, normalized size = 1.83 \begin {gather*} x - e^{\left (\frac {x^{4} \log \left (x^{2}\right )^{2} + 4 \, x^{2} e^{50} - 4 \, x e^{26} - 2 \, {\left (2 \, x^{3} e^{25} - x^{2} e\right )} \log \left (x^{2}\right ) + e^{2}}{x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{5} + 4 \, {\left (2 \, x^{2} e^{50} - x^{2} e + {\left (2 \, x^{3} - 3 \, x e\right )} e^{25} - {\left (x^{4} + x^{3} e^{25} - x^{2} e\right )} \log \left (x^{2}\right ) + e^{2}\right )} e^{\left (\frac {x^{4} \log \left (x^{2}\right )^{2} + 4 \, x^{2} e^{50} - 4 \, x e^{26} - 2 \, {\left (2 \, x^{3} e^{25} - x^{2} e\right )} \log \left (x^{2}\right ) + e^{2}}{x^{4}}\right )}}{x^{5}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.84, size = 57, normalized size = 1.90
method | result | size |
risch | \(x -\left (x^{2}\right )^{-\frac {4 \,{\mathrm e}^{25}}{x}} \left (x^{2}\right )^{\frac {2 \,{\mathrm e}}{x^{2}}} {\mathrm e}^{\frac {x^{4} \ln \left (x^{2}\right )^{2}+4 x^{2} {\mathrm e}^{50}-4 x \,{\mathrm e}^{26}+{\mathrm e}^{2}}{x^{4}}}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 50, normalized size = 1.67 \begin {gather*} x - e^{\left (4 \, \log \relax (x)^{2} - \frac {8 \, e^{25} \log \relax (x)}{x} + \frac {4 \, e \log \relax (x)}{x^{2}} + \frac {4 \, e^{50}}{x^{2}} - \frac {4 \, e^{26}}{x^{3}} + \frac {e^{2}}{x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.48, size = 58, normalized size = 1.93 \begin {gather*} x-\frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^2}{x^4}}\,{\mathrm {e}}^{-\frac {4\,{\mathrm {e}}^{26}}{x^3}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{50}}{x^2}}\,{\mathrm {e}}^{{\ln \left (x^2\right )}^2}\,{\left (x^2\right )}^{\frac {2\,\mathrm {e}}{x^2}}}{{\left (x^2\right )}^{\frac {4\,{\mathrm {e}}^{25}}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.69, size = 56, normalized size = 1.87 \begin {gather*} x - e^{\frac {x^{4} \log {\left (x^{2} \right )}^{2} + 4 x^{2} e^{50} - 4 x e^{26} + \left (- 4 x^{3} e^{25} + 2 e x^{2}\right ) \log {\left (x^{2} \right )} + e^{2}}{x^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________