Optimal. Leaf size=22 \[ x \left (2+\frac {x}{-2+\frac {3}{\frac {2}{3}+e^x}+x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {50+60 x+12 x^2+e^{2 x} \left (72-108 x+27 x^2\right )+e^x \left (-120+18 x+63 x^2\right )}{25+20 x+4 x^2+e^{2 x} \left (36-36 x+9 x^2\right )+e^x \left (-60+6 x+12 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50+60 x+12 x^2+9 e^{2 x} \left (8-12 x+3 x^2\right )+3 e^x \left (-40+6 x+21 x^2\right )}{\left (5+3 e^x (-2+x)+2 x\right )^2} \, dx\\ &=\int \left (\frac {9 x \left (4-2 x+x^2\right )}{(-2+x)^2 \left (5-6 e^x+2 x+3 e^x x\right )}-\frac {9 x^2 \left (-1+x+2 x^2\right )}{(-2+x)^2 \left (5-6 e^x+2 x+3 e^x x\right )^2}+\frac {8-12 x+3 x^2}{(-2+x)^2}\right ) \, dx\\ &=9 \int \frac {x \left (4-2 x+x^2\right )}{(-2+x)^2 \left (5-6 e^x+2 x+3 e^x x\right )} \, dx-9 \int \frac {x^2 \left (-1+x+2 x^2\right )}{(-2+x)^2 \left (5-6 e^x+2 x+3 e^x x\right )^2} \, dx+\int \frac {8-12 x+3 x^2}{(-2+x)^2} \, dx\\ &=-\left (9 \int \left (\frac {27}{\left (5-6 e^x+2 x+3 e^x x\right )^2}+\frac {36}{(-2+x)^2 \left (5-6 e^x+2 x+3 e^x x\right )^2}+\frac {72}{(-2+x) \left (5-6 e^x+2 x+3 e^x x\right )^2}+\frac {9 x}{\left (5-6 e^x+2 x+3 e^x x\right )^2}+\frac {2 x^2}{\left (5-6 e^x+2 x+3 e^x x\right )^2}\right ) \, dx\right )+9 \int \left (\frac {2}{5-6 e^x+2 x+3 e^x x}+\frac {8}{(-2+x)^2 \left (5-6 e^x+2 x+3 e^x x\right )}+\frac {8}{(-2+x) \left (5-6 e^x+2 x+3 e^x x\right )}+\frac {x}{5-6 e^x+2 x+3 e^x x}\right ) \, dx+\int \left (3-\frac {4}{(-2+x)^2}\right ) \, dx\\ &=-\frac {4}{2-x}+3 x+9 \int \frac {x}{5-6 e^x+2 x+3 e^x x} \, dx-18 \int \frac {x^2}{\left (5-6 e^x+2 x+3 e^x x\right )^2} \, dx+18 \int \frac {1}{5-6 e^x+2 x+3 e^x x} \, dx+72 \int \frac {1}{(-2+x)^2 \left (5-6 e^x+2 x+3 e^x x\right )} \, dx+72 \int \frac {1}{(-2+x) \left (5-6 e^x+2 x+3 e^x x\right )} \, dx-81 \int \frac {x}{\left (5-6 e^x+2 x+3 e^x x\right )^2} \, dx-243 \int \frac {1}{\left (5-6 e^x+2 x+3 e^x x\right )^2} \, dx-324 \int \frac {1}{(-2+x)^2 \left (5-6 e^x+2 x+3 e^x x\right )^2} \, dx-648 \int \frac {1}{(-2+x) \left (5-6 e^x+2 x+3 e^x x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 36, normalized size = 1.64 \begin {gather*} \frac {4}{-2+x}+3 x-\frac {9 x^2}{(-2+x) \left (5+3 e^x (-2+x)+2 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 39, normalized size = 1.77 \begin {gather*} \frac {6 \, x^{2} + 3 \, {\left (3 \, x^{2} - 6 \, x + 4\right )} e^{x} + 6 \, x - 10}{3 \, {\left (x - 2\right )} e^{x} + 2 \, x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.33, size = 43, normalized size = 1.95 \begin {gather*} \frac {9 \, x^{2} e^{x} + 6 \, x^{2} - 18 \, x e^{x} + 6 \, x + 12 \, e^{x} - 10}{3 \, x e^{x} + 2 \, x - 6 \, e^{x} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 38, normalized size = 1.73
method | result | size |
risch | \(3 x +\frac {4}{x -2}-\frac {9 x^{2}}{\left (x -2\right ) \left (3 \,{\mathrm e}^{x} x -6 \,{\mathrm e}^{x}+2 x +5\right )}\) | \(38\) |
norman | \(\frac {30 \,{\mathrm e}^{x}-27 \,{\mathrm e}^{x} x +6 x^{2}+9 \,{\mathrm e}^{x} x^{2}-25}{3 \,{\mathrm e}^{x} x -6 \,{\mathrm e}^{x}+2 x +5}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 39, normalized size = 1.77 \begin {gather*} \frac {6 \, x^{2} + 3 \, {\left (3 \, x^{2} - 6 \, x + 4\right )} e^{x} + 6 \, x - 10}{3 \, {\left (x - 2\right )} e^{x} + 2 \, x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 32, normalized size = 1.45 \begin {gather*} \frac {x\,\left (6\,x-12\,{\mathrm {e}}^x+9\,x\,{\mathrm {e}}^x+10\right )}{2\,x-6\,{\mathrm {e}}^x+3\,x\,{\mathrm {e}}^x+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.25, size = 34, normalized size = 1.55 \begin {gather*} - \frac {9 x^{2}}{2 x^{2} + x + \left (3 x^{2} - 12 x + 12\right ) e^{x} - 10} + 3 x + \frac {4}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________