Optimal. Leaf size=26 \[ \frac {(1+x)^2 (x+\log (4))^2}{\log \left (2 x+e^{-x} x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 7.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^2-x^3+x^4+x^5+\left (-2 x-2 x^2+2 x^3+2 x^4\right ) \log (4)+\left (-1-x+x^2+x^3\right ) \log ^2(4)+e^x \left (-2 x^2-4 x^3-2 x^4+\left (-4 x-8 x^2-4 x^3\right ) \log (4)+\left (-2-4 x-2 x^2\right ) \log ^2(4)\right )+\left (2 x^2+6 x^3+4 x^4+\left (2 x+8 x^2+6 x^3\right ) \log (4)+\left (2 x+2 x^2\right ) \log ^2(4)+e^x \left (4 x^2+12 x^3+8 x^4+\left (4 x+16 x^2+12 x^3\right ) \log (4)+\left (4 x+4 x^2\right ) \log ^2(4)\right )\right ) \log \left (e^{-x} \left (x+2 e^x x\right )\right )}{\left (x+2 e^x x\right ) \log ^2\left (e^{-x} \left (x+2 e^x x\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(1+x) (x+\log (4)) \left ((1+x) \left (-1-2 e^x+x\right ) (x+\log (4))+2 \left (1+2 e^x\right ) x (1+2 x+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )\right )}{\left (x+2 e^x x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx\\ &=\int \left (\frac {(1+x)^2 (x+\log (4))^2}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )}+\frac {(1+x) (x+\log (4)) \left (-x^2-\log (4)-x (1+\log (4))+4 x^2 \log \left (\left (2+e^{-x}\right ) x\right )+2 x (1+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )\right )}{x \log ^2\left (2 x+e^{-x} x\right )}\right ) \, dx\\ &=\int \frac {(1+x)^2 (x+\log (4))^2}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+\int \frac {(1+x) (x+\log (4)) \left (-x^2-\log (4)-x (1+\log (4))+4 x^2 \log \left (\left (2+e^{-x}\right ) x\right )+2 x (1+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )\right )}{x \log ^2\left (2 x+e^{-x} x\right )} \, dx\\ &=\int \left (\frac {x^4}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )}+\frac {\log ^2(4)}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )}+\frac {2 x^3 (1+\log (4))}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )}+\frac {2 x \log (4) (1+\log (4))}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )}+\frac {x^2 \left (1+\log ^2(4)+\log (256)\right )}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )}\right ) \, dx+\int \frac {(1+x) (x+\log (4)) \left (-((1+x) (x+\log (4)))+2 x (1+2 x+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )\right )}{x \log ^2\left (2 x+e^{-x} x\right )} \, dx\\ &=\log ^2(4) \int \frac {1}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+(2 (1+\log (4))) \int \frac {x^3}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+(2 \log (4) (1+\log (4))) \int \frac {x}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+\left (1+\log ^2(4)+\log (256)\right ) \int \frac {x^2}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+\int \left (\frac {x \left (-x^2-\log (4)-x (1+\log (4))+4 x^2 \log \left (\left (2+e^{-x}\right ) x\right )+2 x (1+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )\right )}{\log ^2\left (2 x+e^{-x} x\right )}+\frac {\log (4) \left (-x^2-\log (4)-x (1+\log (4))+4 x^2 \log \left (\left (2+e^{-x}\right ) x\right )+2 x (1+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )\right )}{x \log ^2\left (2 x+e^{-x} x\right )}+\frac {(1+\log (4)) \left (-x^2-\log (4)-x (1+\log (4))+4 x^2 \log \left (\left (2+e^{-x}\right ) x\right )+2 x (1+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )\right )}{\log ^2\left (2 x+e^{-x} x\right )}\right ) \, dx+\int \frac {x^4}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx\\ &=\log (4) \int \frac {-x^2-\log (4)-x (1+\log (4))+4 x^2 \log \left (\left (2+e^{-x}\right ) x\right )+2 x (1+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )}{x \log ^2\left (2 x+e^{-x} x\right )} \, dx+\log ^2(4) \int \frac {1}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+(1+\log (4)) \int \frac {-x^2-\log (4)-x (1+\log (4))+4 x^2 \log \left (\left (2+e^{-x}\right ) x\right )+2 x (1+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )}{\log ^2\left (2 x+e^{-x} x\right )} \, dx+(2 (1+\log (4))) \int \frac {x^3}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+(2 \log (4) (1+\log (4))) \int \frac {x}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+\left (1+\log ^2(4)+\log (256)\right ) \int \frac {x^2}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+\int \frac {x^4}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+\int \frac {x \left (-x^2-\log (4)-x (1+\log (4))+4 x^2 \log \left (\left (2+e^{-x}\right ) x\right )+2 x (1+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )\right )}{\log ^2\left (2 x+e^{-x} x\right )} \, dx\\ &=\log (4) \int \frac {-((1+x) (x+\log (4)))+2 x (1+2 x+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )}{x \log ^2\left (2 x+e^{-x} x\right )} \, dx+\log ^2(4) \int \frac {1}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+(1+\log (4)) \int \frac {-((1+x) (x+\log (4)))+2 x (1+2 x+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )}{\log ^2\left (2 x+e^{-x} x\right )} \, dx+(2 (1+\log (4))) \int \frac {x^3}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+(2 \log (4) (1+\log (4))) \int \frac {x}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+\left (1+\log ^2(4)+\log (256)\right ) \int \frac {x^2}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+\int \frac {x^4}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+\int \frac {x \left (-((1+x) (x+\log (4)))+2 x (1+2 x+\log (4)) \log \left (\left (2+e^{-x}\right ) x\right )\right )}{\log ^2\left (2 x+e^{-x} x\right )} \, dx\\ &=\log (4) \int \left (-\frac {x}{\log ^2\left (2 x+e^{-x} x\right )}-\frac {\log (4)}{x \log ^2\left (2 x+e^{-x} x\right )}-\frac {1+\log (4)}{\log ^2\left (2 x+e^{-x} x\right )}+\frac {4 x}{\log \left (2 x+e^{-x} x\right )}+\frac {2 (1+\log (4))}{\log \left (2 x+e^{-x} x\right )}\right ) \, dx+\log ^2(4) \int \frac {1}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+(1+\log (4)) \int \left (-\frac {x^2}{\log ^2\left (2 x+e^{-x} x\right )}-\frac {\log (4)}{\log ^2\left (2 x+e^{-x} x\right )}-\frac {x (1+\log (4))}{\log ^2\left (2 x+e^{-x} x\right )}+\frac {4 x^2}{\log \left (2 x+e^{-x} x\right )}+\frac {2 x (1+\log (4))}{\log \left (2 x+e^{-x} x\right )}\right ) \, dx+(2 (1+\log (4))) \int \frac {x^3}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+(2 \log (4) (1+\log (4))) \int \frac {x}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+\left (1+\log ^2(4)+\log (256)\right ) \int \frac {x^2}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+\int \left (-\frac {x^3}{\log ^2\left (2 x+e^{-x} x\right )}-\frac {x \log (4)}{\log ^2\left (2 x+e^{-x} x\right )}-\frac {x^2 (1+\log (4))}{\log ^2\left (2 x+e^{-x} x\right )}+\frac {4 x^3}{\log \left (2 x+e^{-x} x\right )}+\frac {2 x^2 (1+\log (4))}{\log \left (2 x+e^{-x} x\right )}\right ) \, dx+\int \frac {x^4}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx\\ &=4 \int \frac {x^3}{\log \left (2 x+e^{-x} x\right )} \, dx+2 \left ((-1-\log (4)) \int \frac {x^2}{\log ^2\left (2 x+e^{-x} x\right )} \, dx\right )-2 \left (\log (4) \int \frac {x}{\log ^2\left (2 x+e^{-x} x\right )} \, dx\right )+(4 \log (4)) \int \frac {x}{\log \left (2 x+e^{-x} x\right )} \, dx+\log ^2(4) \int \frac {1}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx-\log ^2(4) \int \frac {1}{x \log ^2\left (2 x+e^{-x} x\right )} \, dx+(2 (1+\log (4))) \int \frac {x^3}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+(2 (1+\log (4))) \int \frac {x^2}{\log \left (2 x+e^{-x} x\right )} \, dx+(4 (1+\log (4))) \int \frac {x^2}{\log \left (2 x+e^{-x} x\right )} \, dx-2 \left ((\log (4) (1+\log (4))) \int \frac {1}{\log ^2\left (2 x+e^{-x} x\right )} \, dx\right )+(2 \log (4) (1+\log (4))) \int \frac {x}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx+(2 \log (4) (1+\log (4))) \int \frac {1}{\log \left (2 x+e^{-x} x\right )} \, dx-(1+\log (4))^2 \int \frac {x}{\log ^2\left (2 x+e^{-x} x\right )} \, dx+\left (2 (1+\log (4))^2\right ) \int \frac {x}{\log \left (2 x+e^{-x} x\right )} \, dx+\left (1+\log ^2(4)+\log (256)\right ) \int \frac {x^2}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx-\int \frac {x^3}{\log ^2\left (2 x+e^{-x} x\right )} \, dx+\int \frac {x^4}{\left (1+2 e^x\right ) \log ^2\left (2 x+e^{-x} x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.01, size = 24, normalized size = 0.92 \begin {gather*} \frac {(1+x)^2 (x+\log (4))^2}{\log \left (\left (2+e^{-x}\right ) x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.47, size = 56, normalized size = 2.15 \begin {gather*} \frac {x^{4} + 2 \, x^{3} + 4 \, {\left (x^{2} + 2 \, x + 1\right )} \log \relax (2)^{2} + x^{2} + 4 \, {\left (x^{3} + 2 \, x^{2} + x\right )} \log \relax (2)}{\log \left ({\left (2 \, x e^{x} + x\right )} e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 69, normalized size = 2.65 \begin {gather*} \frac {x^{4} + 4 \, x^{3} \log \relax (2) + 4 \, x^{2} \log \relax (2)^{2} + 2 \, x^{3} + 8 \, x^{2} \log \relax (2) + 8 \, x \log \relax (2)^{2} + x^{2} + 4 \, x \log \relax (2) + 4 \, \log \relax (2)^{2}}{\log \left ({\left (2 \, x e^{x} + x\right )} e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.26, size = 289, normalized size = 11.12
method | result | size |
risch | \(\frac {8 x^{2} \ln \relax (2)^{2}+8 x^{3} \ln \relax (2)+2 x^{4}+16 x \ln \relax (2)^{2}+16 x^{2} \ln \relax (2)+4 x^{3}+8 \ln \relax (2)^{2}+8 x \ln \relax (2)+2 x^{2}}{2 \ln \relax (2)+2 \ln \relax (x )-2 \ln \left ({\mathrm e}^{x}\right )+2 \ln \left (\frac {1}{2}+{\mathrm e}^{x}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (\frac {1}{2}+{\mathrm e}^{x}\right ) {\mathrm e}^{-x}\right )^{2}+i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\frac {1}{2}+{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (i x \left (\frac {1}{2}+{\mathrm e}^{x}\right ) {\mathrm e}^{-x}\right )^{2}+i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\frac {1}{2}+{\mathrm e}^{x}\right )\right )^{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\frac {1}{2}+{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (i x \left (\frac {1}{2}+{\mathrm e}^{x}\right ) {\mathrm e}^{-x}\right )-i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i \left (\frac {1}{2}+{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\frac {1}{2}+{\mathrm e}^{x}\right )\right )+i \pi \,\mathrm {csgn}\left (i \left (\frac {1}{2}+{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\frac {1}{2}+{\mathrm e}^{x}\right )\right )^{2}-i \pi \mathrm {csgn}\left (i x \left (\frac {1}{2}+{\mathrm e}^{x}\right ) {\mathrm e}^{-x}\right )^{3}-i \pi \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\frac {1}{2}+{\mathrm e}^{x}\right )\right )^{3}}\) | \(289\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 68, normalized size = 2.62 \begin {gather*} -\frac {x^{4} + 2 \, x^{3} {\left (2 \, \log \relax (2) + 1\right )} + {\left (4 \, \log \relax (2)^{2} + 8 \, \log \relax (2) + 1\right )} x^{2} + 4 \, {\left (2 \, \log \relax (2)^{2} + \log \relax (2)\right )} x + 4 \, \log \relax (2)^{2}}{x - \log \relax (x) - \log \left (2 \, e^{x} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.93, size = 259, normalized size = 9.96 \begin {gather*} x^3\,\left (12\,\ln \relax (2)+6\right )+x^2\,\left (16\,\ln \relax (2)+8\,{\ln \relax (2)}^2+2\right )+\frac {4\,x^2\,{\ln \relax (2)}^2+4\,x\,\ln \relax (2)+8\,x\,{\ln \relax (2)}^2+8\,x^2\,\ln \relax (2)+4\,x^3\,\ln \relax (2)+4\,{\ln \relax (2)}^2+x^2+2\,x^3+x^4-\frac {2\,x\,\ln \left ({\mathrm {e}}^{-x}\,\left (x+2\,x\,{\mathrm {e}}^x\right )\right )\,\left (2\,{\mathrm {e}}^x+1\right )\,\left (x+1\right )\,\left (x+\ln \relax (4)+x\,\ln \left (64\right )+4\,{\ln \relax (2)}^2+2\,x^2\right )}{2\,{\mathrm {e}}^x-x+1}}{\ln \left ({\mathrm {e}}^{-x}\,\left (x+2\,x\,{\mathrm {e}}^x\right )\right )}+x\,\left (\ln \left (16\right )+8\,{\ln \relax (2)}^2\right )+4\,x^4-\frac {2\,\left (8\,x^2\,{\ln \relax (2)}^2+4\,x^3\,{\ln \relax (2)}^2-4\,x^4\,{\ln \relax (2)}^2+4\,x^2\,\ln \relax (2)+14\,x^3\,\ln \relax (2)+4\,x^4\,\ln \relax (2)-6\,x^5\,\ln \relax (2)+2\,x^3+5\,x^4+x^5-2\,x^6\right )}{\left (x-2\right )\,\left (2\,{\mathrm {e}}^x-x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.34, size = 73, normalized size = 2.81 \begin {gather*} \frac {x^{4} + 2 x^{3} + 4 x^{3} \log {\relax (2 )} + x^{2} + 4 x^{2} \log {\relax (2 )}^{2} + 8 x^{2} \log {\relax (2 )} + 4 x \log {\relax (2 )} + 8 x \log {\relax (2 )}^{2} + 4 \log {\relax (2 )}^{2}}{\log {\left (\left (2 x e^{x} + x\right ) e^{- x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________