Optimal. Leaf size=29 \[ 1+\left (\frac {e^{4+x}}{4}-\left (4+\frac {1-x}{x}\right )^2\right ) x \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 30, normalized size of antiderivative = 1.03, number of steps used = 6, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 6688, 2176, 2194} \begin {gather*} -9 x-\frac {e^{x+4}}{4}+\frac {1}{4} e^{x+4} (x+1)-\frac {1}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{-x} \left (e^x \left (4-36 x^2\right )+e^{4+2 x} \left (x^2+x^3\right )\right )}{x^2} \, dx\\ &=\frac {1}{4} \int \left (4 \left (-9+\frac {1}{x^2}\right )+e^{4+x} (1+x)\right ) \, dx\\ &=\frac {1}{4} \int e^{4+x} (1+x) \, dx+\int \left (-9+\frac {1}{x^2}\right ) \, dx\\ &=-\frac {1}{x}-9 x+\frac {1}{4} e^{4+x} (1+x)-\frac {1}{4} \int e^{4+x} \, dx\\ &=-\frac {e^{4+x}}{4}-\frac {1}{x}-9 x+\frac {1}{4} e^{4+x} (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.66 \begin {gather*} -\frac {1}{x}-9 x+\frac {1}{4} e^{4+x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 20, normalized size = 0.69 \begin {gather*} \frac {x^{2} e^{\left (x + 4\right )} - 36 \, x^{2} - 4}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 20, normalized size = 0.69 \begin {gather*} \frac {x^{2} e^{\left (x + 4\right )} - 36 \, x^{2} - 4}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.59
method | result | size |
risch | \(-9 x -\frac {1}{x}+\frac {x \,{\mathrm e}^{4+x}}{4}\) | \(17\) |
default | \(-9 x +\frac {{\mathrm e}^{4} {\mathrm e}^{x}}{4}+\frac {{\mathrm e}^{4} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )}{4}-\frac {1}{x}\) | \(33\) |
norman | \(\frac {\left (-9 \,{\mathrm e}^{x} x^{2}+\frac {{\mathrm e}^{4} {\mathrm e}^{2 x} x^{2}}{4}-{\mathrm e}^{x}\right ) {\mathrm e}^{-x}}{x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 28, normalized size = 0.97 \begin {gather*} \frac {1}{4} \, {\left (x e^{4} - e^{4}\right )} e^{x} - 9 \, x - \frac {1}{x} + \frac {1}{4} \, e^{\left (x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.43, size = 16, normalized size = 0.55 \begin {gather*} x\,\left (\frac {{\mathrm {e}}^{x+4}}{4}-9\right )-\frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 0.52 \begin {gather*} \frac {x e^{4} e^{x}}{4} - 9 x - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________