Optimal. Leaf size=23 \[ -4+x+5 \left (1+\log \left (4+\frac {(18+x) \log \left (\frac {5}{x}\right )}{x^2}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-90-5 x+4 x^3+\left (-180+13 x+x^2\right ) \log \left (\frac {5}{x}\right )}{4 x^3+\left (18 x+x^2\right ) \log \left (\frac {5}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-180+13 x+x^2}{x (18+x)}+\frac {5 \left (-324-36 x+143 x^2+4 x^3\right )}{x (18+x) \left (4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )\right )}\right ) \, dx\\ &=5 \int \frac {-324-36 x+143 x^2+4 x^3}{x (18+x) \left (4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )\right )} \, dx+\int \frac {-180+13 x+x^2}{x (18+x)} \, dx\\ &=5 \int \left (\frac {71}{4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )}-\frac {18}{x \left (4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )\right )}+\frac {4 x}{4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )}-\frac {1296}{(18+x) \left (4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )\right )}\right ) \, dx+\int \left (1-\frac {10}{x}+\frac {5}{18+x}\right ) \, dx\\ &=x-10 \log (x)+5 \log (18+x)+20 \int \frac {x}{4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )} \, dx-90 \int \frac {1}{x \left (4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )\right )} \, dx+355 \int \frac {1}{4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )} \, dx-6480 \int \frac {1}{(18+x) \left (4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )\right )} \, dx\\ &=x-10 \log (x)+5 \log (18+x)+20 \int \frac {x}{4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )} \, dx-90 \int \frac {1}{4 x^3+x (18+x) \log \left (\frac {5}{x}\right )} \, dx+355 \int \frac {1}{4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )} \, dx-6480 \int \frac {1}{(18+x) \left (4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 31, normalized size = 1.35 \begin {gather*} x-10 \log (x)+5 \log \left (4 x^2+18 \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 37, normalized size = 1.61 \begin {gather*} x + 5 \, \log \left (x + 18\right ) - 10 \, \log \relax (x) + 5 \, \log \left (\frac {4 \, x^{2} + {\left (x + 18\right )} \log \left (\frac {5}{x}\right )}{x + 18}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 29, normalized size = 1.26 \begin {gather*} x + 5 \, \log \left (\frac {25 \, \log \left (\frac {5}{x}\right )}{x} + \frac {450 \, \log \left (\frac {5}{x}\right )}{x^{2}} + 100\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 33, normalized size = 1.43
method | result | size |
risch | \(x -10 \ln \relax (x )+5 \ln \left (18+x \right )+5 \ln \left (\ln \left (\frac {5}{x}\right )+\frac {4 x^{2}}{18+x}\right )\) | \(33\) |
norman | \(x +10 \ln \left (\frac {5}{x}\right )+5 \ln \left (x \ln \left (\frac {5}{x}\right )+4 x^{2}+18 \ln \left (\frac {5}{x}\right )\right )\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 43, normalized size = 1.87 \begin {gather*} x + 5 \, \log \left (x + 18\right ) - 10 \, \log \relax (x) + 5 \, \log \left (-\frac {4 \, x^{2} + x \log \relax (5) - {\left (x + 18\right )} \log \relax (x) + 18 \, \log \relax (5)}{x + 18}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.91, size = 44, normalized size = 1.91 \begin {gather*} 5\,\ln \left (\frac {9\,\ln \left (\frac {5}{x}\right )}{2}+\frac {x\,\ln \left (\frac {5}{x}\right )}{4}+x^2\right )+\frac {x^3+10\,x^2\,\ln \left (\frac {5}{x}\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 29, normalized size = 1.26 \begin {gather*} x - 10 \log {\relax (x )} + 5 \log {\left (x + 18 \right )} + 5 \log {\left (\frac {4 x^{2}}{x + 18} + \log {\left (\frac {5}{x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________