Optimal. Leaf size=27 \[ -1+\frac {(1+3 (5-x)) \left (\frac {1}{x^2}-x\right ) \log (x)}{5 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 32, normalized size of antiderivative = 1.19, number of steps used = 10, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {12, 14, 2357, 2295, 2304} \begin {gather*} \frac {16 \log (x)}{5 x^3}-\frac {3 \log (x)}{5 x^2}+\frac {3}{5} x \log (x)-\frac {16 \log (x)}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2295
Rule 2304
Rule 2357
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {16-3 x-16 x^3+3 x^4+\left (-48+6 x+3 x^4\right ) \log (x)}{x^4} \, dx\\ &=\frac {1}{5} \int \left (\frac {16-3 x-16 x^3+3 x^4}{x^4}+\frac {3 \left (-16+2 x+x^4\right ) \log (x)}{x^4}\right ) \, dx\\ &=\frac {1}{5} \int \frac {16-3 x-16 x^3+3 x^4}{x^4} \, dx+\frac {3}{5} \int \frac {\left (-16+2 x+x^4\right ) \log (x)}{x^4} \, dx\\ &=\frac {1}{5} \int \left (3+\frac {16}{x^4}-\frac {3}{x^3}-\frac {16}{x}\right ) \, dx+\frac {3}{5} \int \left (\log (x)-\frac {16 \log (x)}{x^4}+\frac {2 \log (x)}{x^3}\right ) \, dx\\ &=-\frac {16}{15 x^3}+\frac {3}{10 x^2}+\frac {3 x}{5}-\frac {16 \log (x)}{5}+\frac {3}{5} \int \log (x) \, dx+\frac {6}{5} \int \frac {\log (x)}{x^3} \, dx-\frac {48}{5} \int \frac {\log (x)}{x^4} \, dx\\ &=-\frac {16 \log (x)}{5}+\frac {16 \log (x)}{5 x^3}-\frac {3 \log (x)}{5 x^2}+\frac {3}{5} x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 32, normalized size = 1.19 \begin {gather*} -\frac {16 \log (x)}{5}+\frac {16 \log (x)}{5 x^3}-\frac {3 \log (x)}{5 x^2}+\frac {3}{5} x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.41, size = 22, normalized size = 0.81 \begin {gather*} \frac {{\left (3 \, x^{4} - 16 \, x^{3} - 3 \, x + 16\right )} \log \relax (x)}{5 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 23, normalized size = 0.85 \begin {gather*} \frac {1}{5} \, {\left (3 \, x - \frac {3 \, x - 16}{x^{3}}\right )} \log \relax (x) - \frac {16}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 23, normalized size = 0.85
method | result | size |
risch | \(\frac {\left (3 x^{4}-3 x +16\right ) \ln \relax (x )}{5 x^{3}}-\frac {16 \ln \relax (x )}{5}\) | \(23\) |
default | \(\frac {3 x \ln \relax (x )}{5}-\frac {16 \ln \relax (x )}{5}-\frac {3 \ln \relax (x )}{5 x^{2}}+\frac {16 \ln \relax (x )}{5 x^{3}}\) | \(25\) |
norman | \(\frac {-\frac {16 x^{3} \ln \relax (x )}{5}-\frac {3 x \ln \relax (x )}{5}+\frac {3 x^{4} \ln \relax (x )}{5}+\frac {16 \ln \relax (x )}{5}}{x^{3}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 24, normalized size = 0.89 \begin {gather*} \frac {3}{5} \, x \log \relax (x) - \frac {3 \, \log \relax (x)}{5 \, x^{2}} + \frac {16 \, \log \relax (x)}{5 \, x^{3}} - \frac {16}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.59, size = 22, normalized size = 0.81 \begin {gather*} -\frac {\ln \relax (x)\,\left (-3\,x^4+16\,x^3+3\,x-16\right )}{5\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 24, normalized size = 0.89 \begin {gather*} - \frac {16 \log {\relax (x )}}{5} + \frac {\left (3 x^{4} - 3 x + 16\right ) \log {\relax (x )}}{5 x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________