3.101.36 \(\int \frac {-12 x^2+36 x \log ^2(2)+(-36-36 x) \log ^4(2)+(-24 x^2+(24 x+24 x^2) \log ^2(2)) \log (x)+(-4 x^2-4 x^3) \log ^2(x)}{9 x^3 \log ^4(2)-6 x^4 \log ^2(2) \log (x)+x^5 \log ^2(x)} \, dx\)

Optimal. Leaf size=29 \[ 4+\frac {4 \left (\frac {1}{2}+x-\frac {x}{\log ^2(2)-\frac {1}{3} x \log (x)}\right )}{x^2} \]

________________________________________________________________________________________

Rubi [F]  time = 0.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-12 x^2+36 x \log ^2(2)+(-36-36 x) \log ^4(2)+\left (-24 x^2+\left (24 x+24 x^2\right ) \log ^2(2)\right ) \log (x)+\left (-4 x^2-4 x^3\right ) \log ^2(x)}{9 x^3 \log ^4(2)-6 x^4 \log ^2(2) \log (x)+x^5 \log ^2(x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(-12*x^2 + 36*x*Log[2]^2 + (-36 - 36*x)*Log[2]^4 + (-24*x^2 + (24*x + 24*x^2)*Log[2]^2)*Log[x] + (-4*x^2 -
 4*x^3)*Log[x]^2)/(9*x^3*Log[2]^4 - 6*x^4*Log[2]^2*Log[x] + x^5*Log[x]^2),x]

[Out]

(2*(1 + x)^2)/x^2 - 36*Log[2]^2*Defer[Int][1/(x^2*(-3*Log[2]^2 + x*Log[x])^2), x] - 12*Defer[Int][1/(x*(-3*Log
[2]^2 + x*Log[x])^2), x] - 24*Defer[Int][1/(x^2*(-3*Log[2]^2 + x*Log[x])), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-12 x^2+36 x \log ^2(2)+(-36-36 x) \log ^4(2)+\left (-24 x^2+\left (24 x+24 x^2\right ) \log ^2(2)\right ) \log (x)+\left (-4 x^2-4 x^3\right ) \log ^2(x)}{x^3 \left (3 \log ^2(2)-x \log (x)\right )^2} \, dx\\ &=\int \left (-\frac {4 (1+x)}{x^3}-\frac {12 \left (x+3 \log ^2(2)\right )}{x^2 \left (-3 \log ^2(2)+x \log (x)\right )^2}-\frac {24}{x^2 \left (-3 \log ^2(2)+x \log (x)\right )}\right ) \, dx\\ &=-\left (4 \int \frac {1+x}{x^3} \, dx\right )-12 \int \frac {x+3 \log ^2(2)}{x^2 \left (-3 \log ^2(2)+x \log (x)\right )^2} \, dx-24 \int \frac {1}{x^2 \left (-3 \log ^2(2)+x \log (x)\right )} \, dx\\ &=\frac {2 (1+x)^2}{x^2}-12 \int \left (\frac {1}{x \left (-3 \log ^2(2)+x \log (x)\right )^2}+\frac {3 \log ^2(2)}{x^2 \left (-3 \log ^2(2)+x \log (x)\right )^2}\right ) \, dx-24 \int \frac {1}{x^2 \left (-3 \log ^2(2)+x \log (x)\right )} \, dx\\ &=\frac {2 (1+x)^2}{x^2}-12 \int \frac {1}{x \left (-3 \log ^2(2)+x \log (x)\right )^2} \, dx-24 \int \frac {1}{x^2 \left (-3 \log ^2(2)+x \log (x)\right )} \, dx-\left (36 \log ^2(2)\right ) \int \frac {1}{x^2 \left (-3 \log ^2(2)+x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.20, size = 26, normalized size = 0.90 \begin {gather*} -\frac {2 \left (-1+x \left (-2-\frac {6}{-3 \log ^2(2)+x \log (x)}\right )\right )}{x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-12*x^2 + 36*x*Log[2]^2 + (-36 - 36*x)*Log[2]^4 + (-24*x^2 + (24*x + 24*x^2)*Log[2]^2)*Log[x] + (-4
*x^2 - 4*x^3)*Log[x]^2)/(9*x^3*Log[2]^4 - 6*x^4*Log[2]^2*Log[x] + x^5*Log[x]^2),x]

[Out]

(-2*(-1 + x*(-2 - 6/(-3*Log[2]^2 + x*Log[x]))))/x^2

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 47, normalized size = 1.62 \begin {gather*} \frac {2 \, {\left (3 \, {\left (2 \, x + 1\right )} \log \relax (2)^{2} - {\left (2 \, x^{2} + x\right )} \log \relax (x) - 6 \, x\right )}}{3 \, x^{2} \log \relax (2)^{2} - x^{3} \log \relax (x)} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x^3-4*x^2)*log(x)^2+((24*x^2+24*x)*log(2)^2-24*x^2)*log(x)+(-36*x-36)*log(2)^4+36*x*log(2)^2-12
*x^2)/(x^5*log(x)^2-6*x^4*log(2)^2*log(x)+9*x^3*log(2)^4),x, algorithm="fricas")

[Out]

2*(3*(2*x + 1)*log(2)^2 - (2*x^2 + x)*log(x) - 6*x)/(3*x^2*log(2)^2 - x^3*log(x))

________________________________________________________________________________________

giac [A]  time = 0.16, size = 30, normalized size = 1.03 \begin {gather*} -\frac {12}{3 \, x \log \relax (2)^{2} - x^{2} \log \relax (x)} + \frac {2 \, {\left (2 \, x + 1\right )}}{x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x^3-4*x^2)*log(x)^2+((24*x^2+24*x)*log(2)^2-24*x^2)*log(x)+(-36*x-36)*log(2)^4+36*x*log(2)^2-12
*x^2)/(x^5*log(x)^2-6*x^4*log(2)^2*log(x)+9*x^3*log(2)^4),x, algorithm="giac")

[Out]

-12/(3*x*log(2)^2 - x^2*log(x)) + 2*(2*x + 1)/x^2

________________________________________________________________________________________

maple [A]  time = 0.08, size = 31, normalized size = 1.07




method result size



risch \(\frac {4 x +2}{x^{2}}-\frac {12}{x \left (3 \ln \relax (2)^{2}-x \ln \relax (x )\right )}\) \(31\)
norman \(\frac {\left (12 \ln \relax (2)^{2}-12\right ) x -4 x^{2} \ln \relax (x )+6 \ln \relax (2)^{2}-2 x \ln \relax (x )}{x^{2} \left (3 \ln \relax (2)^{2}-x \ln \relax (x )\right )}\) \(48\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-4*x^3-4*x^2)*ln(x)^2+((24*x^2+24*x)*ln(2)^2-24*x^2)*ln(x)+(-36*x-36)*ln(2)^4+36*x*ln(2)^2-12*x^2)/(x^5*
ln(x)^2-6*x^4*ln(2)^2*ln(x)+9*x^3*ln(2)^4),x,method=_RETURNVERBOSE)

[Out]

2*(2*x+1)/x^2-12/x/(3*ln(2)^2-x*ln(x))

________________________________________________________________________________________

maxima [A]  time = 0.50, size = 48, normalized size = 1.66 \begin {gather*} \frac {2 \, {\left (6 \, {\left (\log \relax (2)^{2} - 1\right )} x + 3 \, \log \relax (2)^{2} - {\left (2 \, x^{2} + x\right )} \log \relax (x)\right )}}{3 \, x^{2} \log \relax (2)^{2} - x^{3} \log \relax (x)} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x^3-4*x^2)*log(x)^2+((24*x^2+24*x)*log(2)^2-24*x^2)*log(x)+(-36*x-36)*log(2)^4+36*x*log(2)^2-12
*x^2)/(x^5*log(x)^2-6*x^4*log(2)^2*log(x)+9*x^3*log(2)^4),x, algorithm="maxima")

[Out]

2*(6*(log(2)^2 - 1)*x + 3*log(2)^2 - (2*x^2 + x)*log(x))/(3*x^2*log(2)^2 - x^3*log(x))

________________________________________________________________________________________

mupad [B]  time = 8.26, size = 45, normalized size = 1.55 \begin {gather*} \frac {4\,x^2\,\ln \relax (x)+x\,\left (2\,\ln \relax (x)-12\,{\ln \relax (2)}^2+12\right )-6\,{\ln \relax (2)}^2}{x^2\,\left (x\,\ln \relax (x)-3\,{\ln \relax (2)}^2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(2)^4*(36*x + 36) + log(x)^2*(4*x^2 + 4*x^3) - log(x)*(log(2)^2*(24*x + 24*x^2) - 24*x^2) - 36*x*log(
2)^2 + 12*x^2)/(9*x^3*log(2)^4 + x^5*log(x)^2 - 6*x^4*log(2)^2*log(x)),x)

[Out]

(4*x^2*log(x) + x*(2*log(x) - 12*log(2)^2 + 12) - 6*log(2)^2)/(x^2*(x*log(x) - 3*log(2)^2))

________________________________________________________________________________________

sympy [A]  time = 0.15, size = 26, normalized size = 0.90 \begin {gather*} \frac {12}{x^{2} \log {\relax (x )} - 3 x \log {\relax (2 )}^{2}} - \frac {- 4 x - 2}{x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x**3-4*x**2)*ln(x)**2+((24*x**2+24*x)*ln(2)**2-24*x**2)*ln(x)+(-36*x-36)*ln(2)**4+36*x*ln(2)**2
-12*x**2)/(x**5*ln(x)**2-6*x**4*ln(2)**2*ln(x)+9*x**3*ln(2)**4),x)

[Out]

12/(x**2*log(x) - 3*x*log(2)**2) - (-4*x - 2)/x**2

________________________________________________________________________________________