Optimal. Leaf size=25 \[ -\frac {1}{3} \log \left (\frac {(-3+x)^2 x}{e^{\frac {e^x}{x}}+x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x^3+e^{\frac {e^x}{x}} \left (3 x-3 x^2+e^x \left (3-4 x+x^2\right )\right )}{-9 x^3+3 x^4+e^{\frac {e^x}{x}} \left (-9 x^2+3 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x^3-e^{\frac {e^x}{x}} \left (3 x-3 x^2+e^x \left (3-4 x+x^2\right )\right )}{3 (3-x) x^2 \left (e^{\frac {e^x}{x}}+x\right )} \, dx\\ &=\frac {1}{3} \int \frac {2 x^3-e^{\frac {e^x}{x}} \left (3 x-3 x^2+e^x \left (3-4 x+x^2\right )\right )}{(3-x) x^2 \left (e^{\frac {e^x}{x}}+x\right )} \, dx\\ &=\frac {1}{3} \int \left (\frac {e^{\frac {e^x}{x}+x} (-1+x)}{x^2 \left (e^{\frac {e^x}{x}}+x\right )}-\frac {-3 e^{\frac {e^x}{x}}+3 e^{\frac {e^x}{x}} x+2 x^2}{(-3+x) x \left (e^{\frac {e^x}{x}}+x\right )}\right ) \, dx\\ &=\frac {1}{3} \int \frac {e^{\frac {e^x}{x}+x} (-1+x)}{x^2 \left (e^{\frac {e^x}{x}}+x\right )} \, dx-\frac {1}{3} \int \frac {-3 e^{\frac {e^x}{x}}+3 e^{\frac {e^x}{x}} x+2 x^2}{(-3+x) x \left (e^{\frac {e^x}{x}}+x\right )} \, dx\\ &=-\left (\frac {1}{3} \int \left (\frac {3 (-1+x)}{(-3+x) x}-\frac {1}{e^{\frac {e^x}{x}}+x}\right ) \, dx\right )+\frac {1}{3} \int \left (-\frac {e^{\frac {e^x}{x}+x}}{x^2 \left (e^{\frac {e^x}{x}}+x\right )}+\frac {e^{\frac {e^x}{x}+x}}{x \left (e^{\frac {e^x}{x}}+x\right )}\right ) \, dx\\ &=\frac {1}{3} \int \frac {1}{e^{\frac {e^x}{x}}+x} \, dx-\frac {1}{3} \int \frac {e^{\frac {e^x}{x}+x}}{x^2 \left (e^{\frac {e^x}{x}}+x\right )} \, dx+\frac {1}{3} \int \frac {e^{\frac {e^x}{x}+x}}{x \left (e^{\frac {e^x}{x}}+x\right )} \, dx-\int \frac {-1+x}{(-3+x) x} \, dx\\ &=\frac {1}{3} \int \frac {1}{e^{\frac {e^x}{x}}+x} \, dx-\frac {1}{3} \int \frac {e^{\frac {e^x}{x}+x}}{x^2 \left (e^{\frac {e^x}{x}}+x\right )} \, dx+\frac {1}{3} \int \frac {e^{\frac {e^x}{x}+x}}{x \left (e^{\frac {e^x}{x}}+x\right )} \, dx-\int \left (\frac {2}{3 (-3+x)}+\frac {1}{3 x}\right ) \, dx\\ &=-\frac {2}{3} \log (3-x)-\frac {\log (x)}{3}+\frac {1}{3} \int \frac {1}{e^{\frac {e^x}{x}}+x} \, dx-\frac {1}{3} \int \frac {e^{\frac {e^x}{x}+x}}{x^2 \left (e^{\frac {e^x}{x}}+x\right )} \, dx+\frac {1}{3} \int \frac {e^{\frac {e^x}{x}+x}}{x \left (e^{\frac {e^x}{x}}+x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 29, normalized size = 1.16 \begin {gather*} \frac {1}{3} \left (-2 \log (3-x)-\log (x)+\log \left (e^{\frac {e^x}{x}}+x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 23, normalized size = 0.92 \begin {gather*} \frac {1}{3} \, \log \left (x + e^{\left (\frac {e^{x}}{x}\right )}\right ) - \frac {2}{3} \, \log \left (x - 3\right ) - \frac {1}{3} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 33, normalized size = 1.32 \begin {gather*} -\frac {1}{3} \, x + \frac {1}{3} \, \log \left (x e^{x} + e^{\left (\frac {x^{2} + e^{x}}{x}\right )}\right ) - \frac {2}{3} \, \log \left (x - 3\right ) - \frac {1}{3} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 24, normalized size = 0.96
method | result | size |
norman | \(-\frac {\ln \relax (x )}{3}-\frac {2 \ln \left (x -3\right )}{3}+\frac {\ln \left (x +{\mathrm e}^{\frac {{\mathrm e}^{x}}{x}}\right )}{3}\) | \(24\) |
risch | \(-\frac {\ln \relax (x )}{3}-\frac {2 \ln \left (x -3\right )}{3}+\frac {\ln \left (x +{\mathrm e}^{\frac {{\mathrm e}^{x}}{x}}\right )}{3}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 23, normalized size = 0.92 \begin {gather*} \frac {1}{3} \, \log \left (x + e^{\left (\frac {e^{x}}{x}\right )}\right ) - \frac {2}{3} \, \log \left (x - 3\right ) - \frac {1}{3} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.67, size = 23, normalized size = 0.92 \begin {gather*} \frac {\ln \left (x+{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{x}}\right )}{3}-\frac {2\,\ln \left (x-3\right )}{3}-\frac {\ln \relax (x)}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 24, normalized size = 0.96 \begin {gather*} - \frac {\log {\relax (x )}}{3} - \frac {2 \log {\left (x - 3 \right )}}{3} + \frac {\log {\left (x + e^{\frac {e^{x}}{x}} \right )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________