Optimal. Leaf size=34 \[ -1+x+\frac {e^x x}{\left (-x+25 x^2\right ) \left (-1+\frac {x^2}{2-x}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.51, antiderivative size = 42, normalized size of antiderivative = 1.24, number of steps used = 13, number of rules used = 4, integrand size = 87, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.046, Rules used = {6688, 6742, 2177, 2178} \begin {gather*} x+\frac {1225 e^x}{1224 (1-25 x)}-\frac {e^x}{72 (1-x)}+\frac {4 e^x}{153 (x+2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2177
Rule 2178
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {e^x \left (104-200 x-27 x^2+76 x^3-25 x^4\right )}{\left (2-51 x+24 x^2+25 x^3\right )^2}\right ) \, dx\\ &=x+\int \frac {e^x \left (104-200 x-27 x^2+76 x^3-25 x^4\right )}{\left (2-51 x+24 x^2+25 x^3\right )^2} \, dx\\ &=x+\int \left (-\frac {e^x}{72 (-1+x)^2}+\frac {e^x}{72 (-1+x)}-\frac {4 e^x}{153 (2+x)^2}+\frac {4 e^x}{153 (2+x)}+\frac {30625 e^x}{1224 (-1+25 x)^2}-\frac {1225 e^x}{1224 (-1+25 x)}\right ) \, dx\\ &=x-\frac {1}{72} \int \frac {e^x}{(-1+x)^2} \, dx+\frac {1}{72} \int \frac {e^x}{-1+x} \, dx-\frac {4}{153} \int \frac {e^x}{(2+x)^2} \, dx+\frac {4}{153} \int \frac {e^x}{2+x} \, dx-\frac {1225 \int \frac {e^x}{-1+25 x} \, dx}{1224}+\frac {30625 \int \frac {e^x}{(-1+25 x)^2} \, dx}{1224}\\ &=\frac {1225 e^x}{1224 (1-25 x)}-\frac {e^x}{72 (1-x)}+x+\frac {4 e^x}{153 (2+x)}+\frac {1}{72} e \text {Ei}(-1+x)+\frac {4 \text {Ei}(2+x)}{153 e^2}-\frac {49 \sqrt [25]{e} \text {Ei}\left (\frac {1}{25} (-1+25 x)\right )}{1224}-\frac {1}{72} \int \frac {e^x}{-1+x} \, dx-\frac {4}{153} \int \frac {e^x}{2+x} \, dx+\frac {1225 \int \frac {e^x}{-1+25 x} \, dx}{1224}\\ &=\frac {1225 e^x}{1224 (1-25 x)}-\frac {e^x}{72 (1-x)}+x+\frac {4 e^x}{153 (2+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 42, normalized size = 1.24 \begin {gather*} \frac {1225 e^x}{1224 (1-25 x)}-\frac {e^x}{72 (1-x)}+x+\frac {4 e^x}{153 (2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 44, normalized size = 1.29 \begin {gather*} \frac {25 \, x^{4} + 24 \, x^{3} - 51 \, x^{2} - {\left (x - 2\right )} e^{x} + 2 \, x}{25 \, x^{3} + 24 \, x^{2} - 51 \, x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 46, normalized size = 1.35 \begin {gather*} \frac {25 \, x^{4} + 24 \, x^{3} - 51 \, x^{2} - x e^{x} + 2 \, x + 2 \, e^{x}}{25 \, x^{3} + 24 \, x^{2} - 51 \, x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 27, normalized size = 0.79
method | result | size |
risch | \(x -\frac {\left (x -2\right ) {\mathrm e}^{x}}{25 x^{3}+24 x^{2}-51 x +2}\) | \(27\) |
default | \(x +\frac {{\mathrm e}^{x}}{72 x -72}+\frac {4 \,{\mathrm e}^{x}}{153 \left (2+x \right )}-\frac {49 \,{\mathrm e}^{x}}{1224 \left (x -\frac {1}{25}\right )}\) | \(30\) |
norman | \(\frac {-51 x^{2}+2 x +24 x^{3}+25 x^{4}-{\mathrm e}^{x} x +2 \,{\mathrm e}^{x}}{25 x^{3}+24 x^{2}-51 x +2}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 229, normalized size = 6.74 \begin {gather*} x - \frac {{\left (x - 2\right )} e^{x}}{25 \, x^{3} + 24 \, x^{2} - 51 \, x + 2} - \frac {285481771 \, x^{2} - 240455729 \, x + 9161458}{6242400 \, {\left (25 \, x^{3} + 24 \, x^{2} - 51 \, x + 2\right )}} + \frac {4580729 \, x^{2} - 7021771 \, x + 273542}{130050 \, {\left (25 \, x^{3} + 24 \, x^{2} - 51 \, x + 2\right )}} + \frac {329 \, {\left (136771 \, x^{2} - 51929 \, x + 1858\right )}}{1040400 \, {\left (25 \, x^{3} + 24 \, x^{2} - 51 \, x + 2\right )}} - \frac {4075 \, x^{2} + 4687 \, x - 5294}{62424 \, {\left (25 \, x^{3} + 24 \, x^{2} - 51 \, x + 2\right )}} - \frac {899 \, {\left (2275 \, x^{2} + 1255 \, x - 62\right )}}{83232 \, {\left (25 \, x^{3} + 24 \, x^{2} - 51 \, x + 2\right )}} - \frac {587 \, {\left (929 \, x^{2} - 4579 \, x + 182\right )}}{62424 \, {\left (25 \, x^{3} + 24 \, x^{2} - 51 \, x + 2\right )}} + \frac {775 \, x^{2} + 3019 \, x - 326}{1224 \, {\left (25 \, x^{3} + 24 \, x^{2} - 51 \, x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.11, size = 30, normalized size = 0.88 \begin {gather*} x+\frac {2\,{\mathrm {e}}^x-x\,{\mathrm {e}}^x}{\left (25\,x-1\right )\,\left (x-1\right )\,\left (x+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 0.65 \begin {gather*} x + \frac {\left (2 - x\right ) e^{x}}{25 x^{3} + 24 x^{2} - 51 x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________