Optimal. Leaf size=27 \[ \frac {\log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{3 \left (e^x-x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.84, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x x-x^2+\left (e^x (-3+x)+3 x-x^2\right ) \log (x)+\left (x^2-e^x x^2\right ) \log (x) \log \left (-10 e^{3/x} x \log (x)\right ) \log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{\left (3 e^{2 x} x^2-6 e^x x^3+3 x^4\right ) \log (x) \log \left (-10 e^{3/x} x \log (x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x x-x^2+\left (e^x (-3+x)+3 x-x^2\right ) \log (x)+\left (x^2-e^x x^2\right ) \log (x) \log \left (-10 e^{3/x} x \log (x)\right ) \log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{3 \left (e^x-x\right )^2 x^2 \log (x) \log \left (-10 e^{3/x} x \log (x)\right )} \, dx\\ &=\frac {1}{3} \int \frac {e^x x-x^2+\left (e^x (-3+x)+3 x-x^2\right ) \log (x)+\left (x^2-e^x x^2\right ) \log (x) \log \left (-10 e^{3/x} x \log (x)\right ) \log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{\left (e^x-x\right )^2 x^2 \log (x) \log \left (-10 e^{3/x} x \log (x)\right )} \, dx\\ &=\frac {1}{3} \int \left (-\frac {(-1+x) \log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{\left (e^x-x\right )^2}-\frac {-x+3 \log (x)-x \log (x)+x^2 \log (x) \log \left (-10 e^{3/x} x \log (x)\right ) \log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{\left (e^x-x\right ) x^2 \log (x) \log \left (-10 e^{3/x} x \log (x)\right )}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {(-1+x) \log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{\left (e^x-x\right )^2} \, dx\right )-\frac {1}{3} \int \frac {-x+3 \log (x)-x \log (x)+x^2 \log (x) \log \left (-10 e^{3/x} x \log (x)\right ) \log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{\left (e^x-x\right ) x^2 \log (x) \log \left (-10 e^{3/x} x \log (x)\right )} \, dx\\ &=-\left (\frac {1}{3} \int \left (\frac {3}{\left (e^x-x\right ) x^2 \log \left (-10 e^{3/x} x \log (x)\right )}-\frac {1}{\left (e^x-x\right ) x \log \left (-10 e^{3/x} x \log (x)\right )}-\frac {1}{\left (e^x-x\right ) x \log (x) \log \left (-10 e^{3/x} x \log (x)\right )}+\frac {\log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{e^x-x}\right ) \, dx\right )-\frac {1}{3} \int \left (-\frac {\log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{\left (e^x-x\right )^2}+\frac {x \log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{\left (e^x-x\right )^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {1}{\left (e^x-x\right ) x \log \left (-10 e^{3/x} x \log (x)\right )} \, dx+\frac {1}{3} \int \frac {1}{\left (e^x-x\right ) x \log (x) \log \left (-10 e^{3/x} x \log (x)\right )} \, dx+\frac {1}{3} \int \frac {\log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{\left (e^x-x\right )^2} \, dx-\frac {1}{3} \int \frac {\log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{e^x-x} \, dx-\frac {1}{3} \int \frac {x \log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{\left (e^x-x\right )^2} \, dx-\int \frac {1}{\left (e^x-x\right ) x^2 \log \left (-10 e^{3/x} x \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 27, normalized size = 1.00 \begin {gather*} \frac {\log \left (\log \left (-10 e^{3/x} x \log (x)\right )\right )}{3 \left (e^x-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 23, normalized size = 0.85 \begin {gather*} -\frac {\log \left (\log \left (-10 \, x e^{\frac {3}{x}} \log \relax (x)\right )\right )}{3 \, {\left (x - e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 29, normalized size = 1.07 \begin {gather*} -\frac {\log \left (x \log \relax (x) + x \log \left (-10 \, \log \relax (x)\right ) + 3\right ) - \log \relax (x)}{3 \, {\left (x - e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.26, size = 195, normalized size = 7.22
method | result | size |
risch | \(-\frac {\ln \left (\ln \relax (2)+\ln \relax (5)+i \pi +\ln \relax (x )+\ln \left ({\mathrm e}^{\frac {3}{x}}\right )+\ln \left (\ln \relax (x )\right )-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{\frac {3}{x}} \ln \relax (x )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{\frac {3}{x}} \ln \relax (x )\right )+\mathrm {csgn}\left (i {\mathrm e}^{\frac {3}{x}}\right )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{\frac {3}{x}} \ln \relax (x )\right )+\mathrm {csgn}\left (i \ln \relax (x )\right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x \,{\mathrm e}^{\frac {3}{x}} \ln \relax (x )\right ) \left (-\mathrm {csgn}\left (i x \,{\mathrm e}^{\frac {3}{x}} \ln \relax (x )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \,{\mathrm e}^{\frac {3}{x}} \ln \relax (x )\right )+\mathrm {csgn}\left (i {\mathrm e}^{\frac {3}{x}} \ln \relax (x )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{\frac {3}{x}} \ln \relax (x )\right )^{2} \left (\mathrm {csgn}\left (i x \,{\mathrm e}^{\frac {3}{x}} \ln \relax (x )\right )-1\right )\right )}{3 \left (x -{\mathrm e}^{x}\right )}\) | \(195\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 36, normalized size = 1.33 \begin {gather*} -\frac {\log \left (x {\left (\log \relax (5) + \log \relax (2)\right )} + x \log \relax (x) + x \log \left (-\log \relax (x)\right ) + 3\right ) - \log \relax (x)}{3 \, {\left (x - e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {x\,{\mathrm {e}}^x+\ln \relax (x)\,\left (3\,x+{\mathrm {e}}^x\,\left (x-3\right )-x^2\right )-x^2-\ln \left (\ln \left (-10\,x\,{\mathrm {e}}^{3/x}\,\ln \relax (x)\right )\right )\,\ln \left (-10\,x\,{\mathrm {e}}^{3/x}\,\ln \relax (x)\right )\,\ln \relax (x)\,\left (x^2\,{\mathrm {e}}^x-x^2\right )}{\ln \left (-10\,x\,{\mathrm {e}}^{3/x}\,\ln \relax (x)\right )\,\ln \relax (x)\,\left (3\,x^2\,{\mathrm {e}}^{2\,x}-6\,x^3\,{\mathrm {e}}^x+3\,x^4\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.83, size = 26, normalized size = 0.96 \begin {gather*} - \frac {\log {\left (\log {\left (- 10 x e^{\frac {3}{x}} \log {\relax (x )} \right )} \right )}}{3 x - 3 e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________