Optimal. Leaf size=22 \[ e^{e^2+x}+x-\log \left (-5+12 e^{2 x}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6-12 e^{2 x}+x+e^{e^2+x} \left (-5+12 e^{2 x}+x\right )}{-5+12 e^{2 x}+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+e^{e^2+x}+\frac {-11+2 x}{-5+12 e^{2 x}+x}\right ) \, dx\\ &=-x+\int e^{e^2+x} \, dx+\int \frac {-11+2 x}{-5+12 e^{2 x}+x} \, dx\\ &=e^{e^2+x}-x+\int \left (-\frac {11}{-5+12 e^{2 x}+x}+\frac {2 x}{-5+12 e^{2 x}+x}\right ) \, dx\\ &=e^{e^2+x}-x+2 \int \frac {x}{-5+12 e^{2 x}+x} \, dx-11 \int \frac {1}{-5+12 e^{2 x}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 24, normalized size = 1.09 \begin {gather*} e^{e^2+x}+x-\log \left (5-12 e^{2 x}-x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 31, normalized size = 1.41 \begin {gather*} x + e^{\left (x + e^{2}\right )} - \log \left ({\left (x - 5\right )} e^{\left (2 \, e^{2}\right )} + 12 \, e^{\left (2 \, x + 2 \, e^{2}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 21, normalized size = 0.95 \begin {gather*} x + e^{\left (x + e^{2}\right )} - \log \left (-x - 12 \, e^{\left (2 \, x\right )} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 20, normalized size = 0.91
method | result | size |
risch | \({\mathrm e}^{x +{\mathrm e}^{2}}+x -\ln \left ({\mathrm e}^{2 x}+\frac {x}{12}-\frac {5}{12}\right )\) | \(20\) |
norman | \(x +{\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{2}}-\ln \left (12 \,{\mathrm e}^{2 x}+x -5\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 19, normalized size = 0.86 \begin {gather*} x + e^{\left (x + e^{2}\right )} - \log \left (\frac {1}{12} \, x + e^{\left (2 \, x\right )} - \frac {5}{12}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 20, normalized size = 0.91 \begin {gather*} x-\ln \left (x+12\,{\mathrm {e}}^{2\,x}-5\right )+{\mathrm {e}}^{{\mathrm {e}}^2}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 32, normalized size = 1.45 \begin {gather*} - \frac {5 x}{6} + \sqrt {e^{2 x}} e^{e^{2}} - \frac {\log {\left (\frac {x}{12} + e^{2 x} - \frac {5}{12} \right )}}{12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________