3.58 \(\int \frac {1}{x \sqrt {2+x-x^2}} \, dx\)

Optimal. Leaf size=32 \[ -\frac {\tanh ^{-1}\left (\frac {x+4}{2 \sqrt {2} \sqrt {-x^2+x+2}}\right )}{\sqrt {2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {724, 206} \[ -\frac {\tanh ^{-1}\left (\frac {x+4}{2 \sqrt {2} \sqrt {-x^2+x+2}}\right )}{\sqrt {2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[2 + x - x^2]),x]

[Out]

-(ArcTanh[(4 + x)/(2*Sqrt[2]*Sqrt[2 + x - x^2])]/Sqrt[2])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin {align*} \int \frac {1}{x \sqrt {2+x-x^2}} \, dx &=-\left (2 \operatorname {Subst}\left (\int \frac {1}{8-x^2} \, dx,x,\frac {4+x}{\sqrt {2+x-x^2}}\right )\right )\\ &=-\frac {\tanh ^{-1}\left (\frac {4+x}{2 \sqrt {2} \sqrt {2+x-x^2}}\right )}{\sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 32, normalized size = 1.00 \[ -\frac {\tanh ^{-1}\left (\frac {x+4}{2 \sqrt {2} \sqrt {-x^2+x+2}}\right )}{\sqrt {2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[2 + x - x^2]),x]

[Out]

-(ArcTanh[(4 + x)/(2*Sqrt[2]*Sqrt[2 + x - x^2])]/Sqrt[2])

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 0.10, size = 39, normalized size = 1.22 \[ i \sqrt {2} \tan ^{-1}\left (\frac {x}{\sqrt {2}}+\frac {i \sqrt {-x^2+x+2}}{\sqrt {2}}\right ) \]

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x*Sqrt[2 + x - x^2]),x]

[Out]

I*Sqrt[2]*ArcTan[x/Sqrt[2] + (I*Sqrt[2 + x - x^2])/Sqrt[2]]

________________________________________________________________________________________

fricas [A]  time = 0.90, size = 39, normalized size = 1.22 \[ \frac {1}{4} \, \sqrt {2} \log \left (-\frac {4 \, \sqrt {2} \sqrt {-x^{2} + x + 2} {\left (x + 4\right )} + 7 \, x^{2} - 16 \, x - 32}{x^{2}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(-x^2+x+2)^(1/2),x, algorithm="fricas")

[Out]

1/4*sqrt(2)*log(-(4*sqrt(2)*sqrt(-x^2 + x + 2)*(x + 4) + 7*x^2 - 16*x - 32)/x^2)

________________________________________________________________________________________

giac [B]  time = 1.19, size = 71, normalized size = 2.22 \[ -\frac {1}{2} \, \sqrt {2} \log \left (\frac {{\left | -4 \, \sqrt {2} + \frac {2 \, {\left (2 \, \sqrt {-x^{2} + x + 2} - 3\right )}}{2 \, x - 1} - 6 \right |}}{{\left | 4 \, \sqrt {2} + \frac {2 \, {\left (2 \, \sqrt {-x^{2} + x + 2} - 3\right )}}{2 \, x - 1} - 6 \right |}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(-x^2+x+2)^(1/2),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*log(abs(-4*sqrt(2) + 2*(2*sqrt(-x^2 + x + 2) - 3)/(2*x - 1) - 6)/abs(4*sqrt(2) + 2*(2*sqrt(-x^2 +
 x + 2) - 3)/(2*x - 1) - 6))

________________________________________________________________________________________

maple [A]  time = 0.31, size = 25, normalized size = 0.78




method result size



default \(-\frac {\arctanh \left (\frac {\left (4+x \right ) \sqrt {2}}{4 \sqrt {-x^{2}+x +2}}\right ) \sqrt {2}}{2}\) \(25\)
trager \(\frac {\RootOf \left (\textit {\_Z}^{2}-2\right ) \ln \left (\frac {-\RootOf \left (\textit {\_Z}^{2}-2\right ) x +4 \sqrt {-x^{2}+x +2}-4 \RootOf \left (\textit {\_Z}^{2}-2\right )}{x}\right )}{2}\) \(44\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(-x^2+x+2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*arctanh(1/4*(4+x)*2^(1/2)/(-x^2+x+2)^(1/2))*2^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.96, size = 33, normalized size = 1.03 \[ -\frac {1}{2} \, \sqrt {2} \log \left (\frac {2 \, \sqrt {2} \sqrt {-x^{2} + x + 2}}{{\left | x \right |}} + \frac {4}{{\left | x \right |}} + 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(-x^2+x+2)^(1/2),x, algorithm="maxima")

[Out]

-1/2*sqrt(2)*log(2*sqrt(2)*sqrt(-x^2 + x + 2)/abs(x) + 4/abs(x) + 1)

________________________________________________________________________________________

mupad [B]  time = 0.34, size = 28, normalized size = 0.88 \[ -\frac {\sqrt {2}\,\ln \left (\frac {x+2\,\sqrt {2}\,\sqrt {-x^2+x+2}+4}{x}\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(x - x^2 + 2)^(1/2)),x)

[Out]

-(2^(1/2)*log((x + 2*2^(1/2)*(x - x^2 + 2)^(1/2) + 4)/x))/2

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \sqrt {- \left (x - 2\right ) \left (x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(-x**2+x+2)**(1/2),x)

[Out]

Integral(1/(x*sqrt(-(x - 2)*(x + 1))), x)

________________________________________________________________________________________