3.688 \(\int \frac {x^3 \sec ^{-1}(x)}{(-1+x^2)^{5/2}} \, dx\)

Optimal. Leaf size=82 \[ \frac {x}{6 \sqrt {x^2} \left (1-x^2\right )}-\frac {2 x \log (x)}{3 \sqrt {x^2}}+\frac {x \log \left (x^2-1\right )}{3 \sqrt {x^2}}-\frac {\sec ^{-1}(x)}{\sqrt {x^2-1}}-\frac {\sec ^{-1}(x)}{3 \left (x^2-1\right )^{3/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 84, normalized size of antiderivative = 1.02, number of steps used = 5, number of rules used = 6, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {266, 43, 5238, 12, 446, 77} \[ \frac {x}{6 \sqrt {x^2} \left (1-x^2\right )}-\frac {2 x \log (x)}{3 \sqrt {x^2}}+\frac {x \log \left (1-x^2\right )}{3 \sqrt {x^2}}-\frac {\sec ^{-1}(x)}{\sqrt {x^2-1}}-\frac {\sec ^{-1}(x)}{3 \left (x^2-1\right )^{3/2}} \]

Warning: Unable to verify antiderivative.

[In]

Int[(x^3*ArcSec[x])/(-1 + x^2)^(5/2),x]

[Out]

x/(6*Sqrt[x^2]*(1 - x^2)) - ArcSec[x]/(3*(-1 + x^2)^(3/2)) - ArcSec[x]/Sqrt[-1 + x^2] - (2*x*Log[x])/(3*Sqrt[x
^2]) + (x*Log[1 - x^2])/(3*Sqrt[x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 5238

Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
 IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSec[c*x], u, x] - Dist[(b*c*x)/Sqrt[c^2*x^2], Int[SimplifyI
ntegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] &&  !(ILtQ
[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0])) || (I
LtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rubi steps

\begin {align*} \int \frac {x^3 \sec ^{-1}(x)}{\left (-1+x^2\right )^{5/2}} \, dx &=-\frac {\sec ^{-1}(x)}{3 \left (-1+x^2\right )^{3/2}}-\frac {\sec ^{-1}(x)}{\sqrt {-1+x^2}}-\frac {x \int \frac {2-3 x^2}{3 x \left (1-x^2\right )^2} \, dx}{\sqrt {x^2}}\\ &=-\frac {\sec ^{-1}(x)}{3 \left (-1+x^2\right )^{3/2}}-\frac {\sec ^{-1}(x)}{\sqrt {-1+x^2}}-\frac {x \int \frac {2-3 x^2}{x \left (1-x^2\right )^2} \, dx}{3 \sqrt {x^2}}\\ &=-\frac {\sec ^{-1}(x)}{3 \left (-1+x^2\right )^{3/2}}-\frac {\sec ^{-1}(x)}{\sqrt {-1+x^2}}-\frac {x \operatorname {Subst}\left (\int \frac {2-3 x}{(1-x)^2 x} \, dx,x,x^2\right )}{6 \sqrt {x^2}}\\ &=-\frac {\sec ^{-1}(x)}{3 \left (-1+x^2\right )^{3/2}}-\frac {\sec ^{-1}(x)}{\sqrt {-1+x^2}}-\frac {x \operatorname {Subst}\left (\int \left (-\frac {1}{(-1+x)^2}-\frac {2}{-1+x}+\frac {2}{x}\right ) \, dx,x,x^2\right )}{6 \sqrt {x^2}}\\ &=\frac {x}{6 \sqrt {x^2} \left (1-x^2\right )}-\frac {\sec ^{-1}(x)}{3 \left (-1+x^2\right )^{3/2}}-\frac {\sec ^{-1}(x)}{\sqrt {-1+x^2}}-\frac {2 x \log (x)}{3 \sqrt {x^2}}+\frac {x \log \left (1-x^2\right )}{3 \sqrt {x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 72, normalized size = 0.88 \[ \frac {-\frac {\left (x^2-1\right ) \left (4 \left (x^2-1\right ) \log (x)-2 \left (x^2-1\right ) \log \left (1-x^2\right )+1\right )}{\sqrt {1-\frac {1}{x^2}} x}-2 \left (3 x^2-2\right ) \sec ^{-1}(x)}{6 \left (x^2-1\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^3*ArcSec[x])/(-1 + x^2)^(5/2),x]

[Out]

(-2*(-2 + 3*x^2)*ArcSec[x] - ((-1 + x^2)*(1 + 4*(-1 + x^2)*Log[x] - 2*(-1 + x^2)*Log[1 - x^2]))/(Sqrt[1 - x^(-
2)]*x))/(6*(-1 + x^2)^(3/2))

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^3 \sec ^{-1}(x)}{\left (-1+x^2\right )^{5/2}} \, dx \]

Verification is Not applicable to the result.

[In]

IntegrateAlgebraic[(x^3*ArcSec[x])/(-1 + x^2)^(5/2),x]

[Out]

Could not integrate

________________________________________________________________________________________

fricas [A]  time = 1.18, size = 69, normalized size = 0.84 \[ -\frac {2 \, {\left (3 \, x^{2} - 2\right )} \sqrt {x^{2} - 1} \operatorname {arcsec}\relax (x) + x^{2} - 2 \, {\left (x^{4} - 2 \, x^{2} + 1\right )} \log \left (x^{2} - 1\right ) + 4 \, {\left (x^{4} - 2 \, x^{2} + 1\right )} \log \relax (x) - 1}{6 \, {\left (x^{4} - 2 \, x^{2} + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arcsec(x)/(x^2-1)^(5/2),x, algorithm="fricas")

[Out]

-1/6*(2*(3*x^2 - 2)*sqrt(x^2 - 1)*arcsec(x) + x^2 - 2*(x^4 - 2*x^2 + 1)*log(x^2 - 1) + 4*(x^4 - 2*x^2 + 1)*log
(x) - 1)/(x^4 - 2*x^2 + 1)

________________________________________________________________________________________

giac [A]  time = 1.25, size = 64, normalized size = 0.78 \[ -\frac {{\left (3 \, x^{2} - 2\right )} \arccos \left (\frac {1}{x}\right )}{3 \, {\left (x^{2} - 1\right )}^{\frac {3}{2}}} - \frac {\log \left (x^{2}\right )}{3 \, \mathrm {sgn}\relax (x)} + \frac {\log \left ({\left | x^{2} - 1 \right |}\right )}{3 \, \mathrm {sgn}\relax (x)} - \frac {2 \, x^{2} - 1}{6 \, {\left (x^{2} - 1\right )} \mathrm {sgn}\relax (x)} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arcsec(x)/(x^2-1)^(5/2),x, algorithm="giac")

[Out]

-1/3*(3*x^2 - 2)*arccos(1/x)/(x^2 - 1)^(3/2) - 1/3*log(x^2)/sgn(x) + 1/3*log(abs(x^2 - 1))/sgn(x) - 1/6*(2*x^2
 - 1)/((x^2 - 1)*sgn(x))

________________________________________________________________________________________

maple [C]  time = 0.84, size = 197, normalized size = 2.40




method result size



default \(-\frac {4 i \sqrt {\frac {x^{2}-1}{x^{2}}}\, x \,\mathrm {arcsec}\relax (x )}{3 \sqrt {x^{2}-1}}+\frac {\sqrt {x^{2}-1}\, \left (2 i \sqrt {\frac {x^{2}-1}{x^{2}}}\, x^{3}-2 i \sqrt {\frac {x^{2}-1}{x^{2}}}\, x -3 x^{2}+2\right ) \left (8 x^{4} \mathrm {arcsec}\relax (x )+2 i x^{4}+3 \sqrt {\frac {x^{2}-1}{x^{2}}}\, x^{3}-6 \,\mathrm {arcsec}\relax (x ) x^{2}-4 i x^{2}-2 \sqrt {\frac {x^{2}-1}{x^{2}}}\, x +2 i\right )}{6 x^{2} \left (4 x^{6}-11 x^{4}+10 x^{2}-3\right )}+\frac {2 \sqrt {\frac {x^{2}-1}{x^{2}}}\, x \ln \left (\left (\frac {1}{x}+i \sqrt {1-\frac {1}{x^{2}}}\right )^{2}-1\right )}{3 \sqrt {x^{2}-1}}\) \(197\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*arcsec(x)/(x^2-1)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-4/3*I/(x^2-1)^(1/2)*((x^2-1)/x^2)^(1/2)*x*arcsec(x)+1/6*(x^2-1)^(1/2)/x^2*(2*I*((x^2-1)/x^2)^(1/2)*x^3-2*I*((
x^2-1)/x^2)^(1/2)*x-3*x^2+2)*(8*x^4*arcsec(x)+2*I*x^4+3*((x^2-1)/x^2)^(1/2)*x^3-6*arcsec(x)*x^2-4*I*x^2-2*((x^
2-1)/x^2)^(1/2)*x+2*I)/(4*x^6-11*x^4+10*x^2-3)+2/3/(x^2-1)^(1/2)*((x^2-1)/x^2)^(1/2)*x*ln((1/x+I*(1-1/x^2)^(1/
2))^2-1)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3} \operatorname {arcsec}\relax (x)}{{\left (x^{2} - 1\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arcsec(x)/(x^2-1)^(5/2),x, algorithm="maxima")

[Out]

integrate(x^3*arcsec(x)/(x^2 - 1)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^3\,\mathrm {acos}\left (\frac {1}{x}\right )}{{\left (x^2-1\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*acos(1/x))/(x^2 - 1)^(5/2),x)

[Out]

int((x^3*acos(1/x))/(x^2 - 1)^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*asec(x)/(x**2-1)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________