3.662 \(\int \frac {x \cos ^{-1}(x)}{(1-x^2)^{3/2}} \, dx\)

Optimal. Leaf size=17 \[ \frac {\cos ^{-1}(x)}{\sqrt {1-x^2}}+\tanh ^{-1}(x) \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {4678, 206} \[ \frac {\cos ^{-1}(x)}{\sqrt {1-x^2}}+\tanh ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[(x*ArcCos[x])/(1 - x^2)^(3/2),x]

[Out]

ArcCos[x]/Sqrt[1 - x^2] + ArcTanh[x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 4678

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcCos[c*x])^n)/(2*e*(p + 1)), x] - Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x \cos ^{-1}(x)}{\left (1-x^2\right )^{3/2}} \, dx &=\frac {\cos ^{-1}(x)}{\sqrt {1-x^2}}+\int \frac {1}{1-x^2} \, dx\\ &=\frac {\cos ^{-1}(x)}{\sqrt {1-x^2}}+\tanh ^{-1}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 32, normalized size = 1.88 \[ \frac {1}{2} \left (\frac {2 \cos ^{-1}(x)}{\sqrt {1-x^2}}-\log (1-x)+\log (x+1)\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(x*ArcCos[x])/(1 - x^2)^(3/2),x]

[Out]

((2*ArcCos[x])/Sqrt[1 - x^2] - Log[1 - x] + Log[1 + x])/2

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \cos ^{-1}(x)}{\left (1-x^2\right )^{3/2}} \, dx \]

Verification is Not applicable to the result.

[In]

IntegrateAlgebraic[(x*ArcCos[x])/(1 - x^2)^(3/2),x]

[Out]

Could not integrate

________________________________________________________________________________________

fricas [B]  time = 1.19, size = 44, normalized size = 2.59 \[ \frac {{\left (x^{2} - 1\right )} \log \left (x + 1\right ) - {\left (x^{2} - 1\right )} \log \left (x - 1\right ) - 2 \, \sqrt {-x^{2} + 1} \arccos \relax (x)}{2 \, {\left (x^{2} - 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccos(x)/(-x^2+1)^(3/2),x, algorithm="fricas")

[Out]

1/2*((x^2 - 1)*log(x + 1) - (x^2 - 1)*log(x - 1) - 2*sqrt(-x^2 + 1)*arccos(x))/(x^2 - 1)

________________________________________________________________________________________

giac [A]  time = 1.30, size = 27, normalized size = 1.59 \[ \frac {\arccos \relax (x)}{\sqrt {-x^{2} + 1}} + \frac {1}{2} \, \log \left ({\left | x + 1 \right |}\right ) - \frac {1}{2} \, \log \left ({\left | x - 1 \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccos(x)/(-x^2+1)^(3/2),x, algorithm="giac")

[Out]

arccos(x)/sqrt(-x^2 + 1) + 1/2*log(abs(x + 1)) - 1/2*log(abs(x - 1))

________________________________________________________________________________________

maple [B]  time = 0.31, size = 47, normalized size = 2.76




method result size



default \(-\frac {\sqrt {-x^{2}+1}\, \arccos \relax (x )}{x^{2}-1}-\ln \left (\frac {1}{\sqrt {-x^{2}+1}}-\frac {x}{\sqrt {-x^{2}+1}}\right )\) \(47\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arccos(x)/(-x^2+1)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-(-x^2+1)^(1/2)/(x^2-1)*arccos(x)-ln(1/(-x^2+1)^(1/2)-x/(-x^2+1)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.99, size = 25, normalized size = 1.47 \[ \frac {\arccos \relax (x)}{\sqrt {-x^{2} + 1}} + \frac {1}{2} \, \log \left (x + 1\right ) - \frac {1}{2} \, \log \left (x - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccos(x)/(-x^2+1)^(3/2),x, algorithm="maxima")

[Out]

arccos(x)/sqrt(-x^2 + 1) + 1/2*log(x + 1) - 1/2*log(x - 1)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.06 \[ \int \frac {x\,\mathrm {acos}\relax (x)}{{\left (1-x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*acos(x))/(1 - x^2)^(3/2),x)

[Out]

int((x*acos(x))/(1 - x^2)^(3/2), x)

________________________________________________________________________________________

sympy [A]  time = 11.91, size = 20, normalized size = 1.18 \[ \begin {cases} \operatorname {acoth}{\relax (x )} & \text {for}\: x^{2} > 1 \\\operatorname {atanh}{\relax (x )} & \text {for}\: x^{2} < 1 \end {cases} + \frac {\operatorname {acos}{\relax (x )}}{\sqrt {1 - x^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*acos(x)/(-x**2+1)**(3/2),x)

[Out]

Piecewise((acoth(x), x**2 > 1), (atanh(x), x**2 < 1)) + acos(x)/sqrt(1 - x**2)

________________________________________________________________________________________