3.626 \(\int \frac {1}{x \log (x) \sqrt {a^2-\log ^2(x)}} \, dx\)

Optimal. Leaf size=24 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a^2-\log ^2(x)}}{a}\right )}{a} \]

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {266, 63, 206} \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a^2-\log ^2(x)}}{a}\right )}{a} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Log[x]*Sqrt[a^2 - Log[x]^2]),x]

[Out]

-(ArcTanh[Sqrt[a^2 - Log[x]^2]/a]/a)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x \log (x) \sqrt {a^2-\log ^2(x)}} \, dx &=\operatorname {Subst}\left (\int \frac {1}{x \sqrt {a^2-x^2}} \, dx,x,\log (x)\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{\sqrt {a^2-x} x} \, dx,x,\log ^2(x)\right )\\ &=-\operatorname {Subst}\left (\int \frac {1}{a^2-x^2} \, dx,x,\sqrt {a^2-\log ^2(x)}\right )\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {a^2-\log ^2(x)}}{a}\right )}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 24, normalized size = 1.00 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a^2-\log ^2(x)}}{a}\right )}{a} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Log[x]*Sqrt[a^2 - Log[x]^2]),x]

[Out]

-(ArcTanh[Sqrt[a^2 - Log[x]^2]/a]/a)

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \log (x) \sqrt {a^2-\log ^2(x)}} \, dx \]

Verification is Not applicable to the result.

[In]

IntegrateAlgebraic[1/(x*Log[x]*Sqrt[a^2 - Log[x]^2]),x]

[Out]

Could not integrate

________________________________________________________________________________________

fricas [A]  time = 0.77, size = 27, normalized size = 1.12 \[ \frac {\log \left (-\frac {a - \sqrt {a^{2} - \log \relax (x)^{2}}}{\log \relax (x)}\right )}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/log(x)/(a^2-log(x)^2)^(1/2),x, algorithm="fricas")

[Out]

log(-(a - sqrt(a^2 - log(x)^2))/log(x))/a

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/log(x)/(a^2-log(x)^2)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.02, size = 39, normalized size = 1.62




method result size



derivativedivides \(-\frac {\ln \left (\frac {2 a^{2}+2 \sqrt {a^{2}}\, \sqrt {a^{2}-\ln \relax (x )^{2}}}{\ln \relax (x )}\right )}{\sqrt {a^{2}}}\) \(39\)
default \(-\frac {\ln \left (\frac {2 a^{2}+2 \sqrt {a^{2}}\, \sqrt {a^{2}-\ln \relax (x )^{2}}}{\ln \relax (x )}\right )}{\sqrt {a^{2}}}\) \(39\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/ln(x)/(a^2-ln(x)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/(a^2)^(1/2)*ln((2*a^2+2*(a^2)^(1/2)*(a^2-ln(x)^2)^(1/2))/ln(x))

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 37, normalized size = 1.54 \[ -\frac {\log \left (\frac {2 \, a^{2}}{{\left | \log \relax (x) \right |}} + \frac {2 \, \sqrt {a^{2} - \log \relax (x)^{2}} a}{{\left | \log \relax (x) \right |}}\right )}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/log(x)/(a^2-log(x)^2)^(1/2),x, algorithm="maxima")

[Out]

-log(2*a^2/abs(log(x)) + 2*sqrt(a^2 - log(x)^2)*a/abs(log(x)))/a

________________________________________________________________________________________

mupad [B]  time = 0.61, size = 22, normalized size = 0.92 \[ -\frac {\mathrm {atanh}\left (\frac {\sqrt {a^2-{\ln \relax (x)}^2}}{a}\right )}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*log(x)*(a^2 - log(x)^2)^(1/2)),x)

[Out]

-atanh((a^2 - log(x)^2)^(1/2)/a)/a

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \sqrt {\left (a - \log {\relax (x )}\right ) \left (a + \log {\relax (x )}\right )} \log {\relax (x )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/ln(x)/(a**2-ln(x)**2)**(1/2),x)

[Out]

Integral(1/(x*sqrt((a - log(x))*(a + log(x)))*log(x)), x)

________________________________________________________________________________________