3.521 \(\int (1-a^{m x})^n \, dx\)

Optimal. Leaf size=44 \[ -\frac {\left (1-a^{m x}\right )^{n+1} \, _2F_1\left (1,n+1;n+2;1-a^{m x}\right )}{m (n+1) \log (a)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2282, 65} \[ -\frac {\left (1-a^{m x}\right )^{n+1} \text {Hypergeometric2F1}\left (1,n+1,n+2,1-a^{m x}\right )}{m (n+1) \log (a)} \]

Antiderivative was successfully verified.

[In]

Int[(1 - a^(m*x))^n,x]

[Out]

-(((1 - a^(m*x))^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, 1 - a^(m*x)])/(m*(1 + n)*Log[a]))

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

\begin {align*} \int \left (1-a^{m x}\right )^n \, dx &=\frac {\operatorname {Subst}\left (\int \frac {(1-x)^n}{x} \, dx,x,a^{m x}\right )}{m \log (a)}\\ &=-\frac {\left (1-a^{m x}\right )^{1+n} \, _2F_1\left (1,1+n;2+n;1-a^{m x}\right )}{m (1+n) \log (a)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 44, normalized size = 1.00 \[ -\frac {\left (1-a^{m x}\right )^{n+1} \, _2F_1\left (1,n+1;n+2;1-a^{m x}\right )}{m (n+1) \log (a)} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - a^(m*x))^n,x]

[Out]

-(((1 - a^(m*x))^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, 1 - a^(m*x)])/(m*(1 + n)*Log[a]))

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (1-a^{m x}\right )^n \, dx \]

Verification is Not applicable to the result.

[In]

IntegrateAlgebraic[(1 - a^(m*x))^n,x]

[Out]

Could not integrate

________________________________________________________________________________________

fricas [F]  time = 1.12, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (-a^{m x} + 1\right )}^{n}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-a^(m*x))^n,x, algorithm="fricas")

[Out]

integral((-a^(m*x) + 1)^n, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (-a^{m x} + 1\right )}^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-a^(m*x))^n,x, algorithm="giac")

[Out]

integrate((-a^(m*x) + 1)^n, x)

________________________________________________________________________________________

maple [F]  time = 0.02, size = 0, normalized size = 0.00 \[\int \left (1-a^{m x}\right )^{n}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-a^(m*x))^n,x)

[Out]

int((1-a^(m*x))^n,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (-a^{m x} + 1\right )}^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-a^(m*x))^n,x, algorithm="maxima")

[Out]

integrate((-a^(m*x) + 1)^n, x)

________________________________________________________________________________________

mupad [B]  time = 0.32, size = 57, normalized size = 1.30 \[ \frac {{\left (1-a^{m\,x}\right )}^n\,{{}}_2{\mathrm {F}}_1\left (-n,-n;\ 1-n;\ \frac {1}{a^{m\,x}}\right )}{m\,n\,\ln \relax (a)\,{\left (1-\frac {1}{a^{m\,x}}\right )}^n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - a^(m*x))^n,x)

[Out]

((1 - a^(m*x))^n*hypergeom([-n, -n], 1 - n, 1/a^(m*x)))/(m*n*log(a)*(1 - 1/a^(m*x))^n)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (1 - a^{m x}\right )^{n}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-a**(m*x))**n,x)

[Out]

Integral((1 - a**(m*x))**n, x)

________________________________________________________________________________________