3.277 \(\int \frac {1}{x^3 (1+x+x^2)^{3/2}} \, dx\)

Optimal. Leaf size=79 \[ \frac {2 (1-x)}{3 x^2 \sqrt {x^2+x+1}}+\frac {37 \sqrt {x^2+x+1}}{12 x}-\frac {7 \sqrt {x^2+x+1}}{6 x^2}-\frac {3}{8} \tanh ^{-1}\left (\frac {x+2}{2 \sqrt {x^2+x+1}}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {740, 834, 806, 724, 206} \[ \frac {2 (1-x)}{3 x^2 \sqrt {x^2+x+1}}+\frac {37 \sqrt {x^2+x+1}}{12 x}-\frac {7 \sqrt {x^2+x+1}}{6 x^2}-\frac {3}{8} \tanh ^{-1}\left (\frac {x+2}{2 \sqrt {x^2+x+1}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(1 + x + x^2)^(3/2)),x]

[Out]

(2*(1 - x))/(3*x^2*Sqrt[1 + x + x^2]) - (7*Sqrt[1 + x + x^2])/(6*x^2) + (37*Sqrt[1 + x + x^2])/(12*x) - (3*Arc
Tanh[(2 + x)/(2*Sqrt[1 + x + x^2])])/8

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 740

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e
+ a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 806

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2)), x] - Dist[(b
*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x],
x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[Sim
plify[m + 2*p + 3], 0]

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
 + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
 + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rubi steps

\begin {align*} \int \frac {1}{x^3 \left (1+x+x^2\right )^{3/2}} \, dx &=\frac {2 (1-x)}{3 x^2 \sqrt {1+x+x^2}}+\frac {2}{3} \int \frac {\frac {7}{2}-2 x}{x^3 \sqrt {1+x+x^2}} \, dx\\ &=\frac {2 (1-x)}{3 x^2 \sqrt {1+x+x^2}}-\frac {7 \sqrt {1+x+x^2}}{6 x^2}-\frac {1}{3} \int \frac {\frac {37}{4}+\frac {7 x}{2}}{x^2 \sqrt {1+x+x^2}} \, dx\\ &=\frac {2 (1-x)}{3 x^2 \sqrt {1+x+x^2}}-\frac {7 \sqrt {1+x+x^2}}{6 x^2}+\frac {37 \sqrt {1+x+x^2}}{12 x}+\frac {3}{8} \int \frac {1}{x \sqrt {1+x+x^2}} \, dx\\ &=\frac {2 (1-x)}{3 x^2 \sqrt {1+x+x^2}}-\frac {7 \sqrt {1+x+x^2}}{6 x^2}+\frac {37 \sqrt {1+x+x^2}}{12 x}-\frac {3}{4} \operatorname {Subst}\left (\int \frac {1}{4-x^2} \, dx,x,\frac {2+x}{\sqrt {1+x+x^2}}\right )\\ &=\frac {2 (1-x)}{3 x^2 \sqrt {1+x+x^2}}-\frac {7 \sqrt {1+x+x^2}}{6 x^2}+\frac {37 \sqrt {1+x+x^2}}{12 x}-\frac {3}{8} \tanh ^{-1}\left (\frac {2+x}{2 \sqrt {1+x+x^2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 65, normalized size = 0.82 \[ \frac {74 x^3+46 x^2-9 \sqrt {x^2+x+1} x^2 \tanh ^{-1}\left (\frac {x+2}{2 \sqrt {x^2+x+1}}\right )+30 x-12}{24 x^2 \sqrt {x^2+x+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(1 + x + x^2)^(3/2)),x]

[Out]

(-12 + 30*x + 46*x^2 + 74*x^3 - 9*x^2*Sqrt[1 + x + x^2]*ArcTanh[(2 + x)/(2*Sqrt[1 + x + x^2])])/(24*x^2*Sqrt[1
 + x + x^2])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.22, size = 52, normalized size = 0.66 \[ \frac {3}{4} \tanh ^{-1}\left (x-\sqrt {x^2+x+1}\right )+\frac {37 x^3+23 x^2+15 x-6}{12 x^2 \sqrt {x^2+x+1}} \]

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x^3*(1 + x + x^2)^(3/2)),x]

[Out]

(-6 + 15*x + 23*x^2 + 37*x^3)/(12*x^2*Sqrt[1 + x + x^2]) + (3*ArcTanh[x - Sqrt[1 + x + x^2]])/4

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 107, normalized size = 1.35 \[ \frac {74 \, x^{4} + 74 \, x^{3} + 74 \, x^{2} - 9 \, {\left (x^{4} + x^{3} + x^{2}\right )} \log \left (-x + \sqrt {x^{2} + x + 1} + 1\right ) + 9 \, {\left (x^{4} + x^{3} + x^{2}\right )} \log \left (-x + \sqrt {x^{2} + x + 1} - 1\right ) + 2 \, {\left (37 \, x^{3} + 23 \, x^{2} + 15 \, x - 6\right )} \sqrt {x^{2} + x + 1}}{24 \, {\left (x^{4} + x^{3} + x^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^2+x+1)^(3/2),x, algorithm="fricas")

[Out]

1/24*(74*x^4 + 74*x^3 + 74*x^2 - 9*(x^4 + x^3 + x^2)*log(-x + sqrt(x^2 + x + 1) + 1) + 9*(x^4 + x^3 + x^2)*log
(-x + sqrt(x^2 + x + 1) - 1) + 2*(37*x^3 + 23*x^2 + 15*x - 6)*sqrt(x^2 + x + 1))/(x^4 + x^3 + x^2)

________________________________________________________________________________________

giac [A]  time = 0.63, size = 117, normalized size = 1.48 \[ \frac {2 \, {\left (2 \, x + 1\right )}}{3 \, \sqrt {x^{2} + x + 1}} - \frac {3 \, {\left (x - \sqrt {x^{2} + x + 1}\right )}^{3} + 8 \, {\left (x - \sqrt {x^{2} + x + 1}\right )}^{2} - 13 \, x + 13 \, \sqrt {x^{2} + x + 1} - 16}{4 \, {\left ({\left (x - \sqrt {x^{2} + x + 1}\right )}^{2} - 1\right )}^{2}} - \frac {3}{8} \, \log \left ({\left | -x + \sqrt {x^{2} + x + 1} + 1 \right |}\right ) + \frac {3}{8} \, \log \left ({\left | -x + \sqrt {x^{2} + x + 1} - 1 \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^2+x+1)^(3/2),x, algorithm="giac")

[Out]

2/3*(2*x + 1)/sqrt(x^2 + x + 1) - 1/4*(3*(x - sqrt(x^2 + x + 1))^3 + 8*(x - sqrt(x^2 + x + 1))^2 - 13*x + 13*s
qrt(x^2 + x + 1) - 16)/((x - sqrt(x^2 + x + 1))^2 - 1)^2 - 3/8*log(abs(-x + sqrt(x^2 + x + 1) + 1)) + 3/8*log(
abs(-x + sqrt(x^2 + x + 1) - 1))

________________________________________________________________________________________

maple [A]  time = 0.35, size = 46, normalized size = 0.58




method result size



risch \(\frac {37 x^{3}+23 x^{2}+15 x -6}{12 \sqrt {x^{2}+x +1}\, x^{2}}-\frac {3 \arctanh \left (\frac {2+x}{2 \sqrt {x^{2}+x +1}}\right )}{8}\) \(46\)
trager \(\frac {37 x^{3}+23 x^{2}+15 x -6}{12 \sqrt {x^{2}+x +1}\, x^{2}}+\frac {3 \ln \left (\frac {-2-x +2 \sqrt {x^{2}+x +1}}{x}\right )}{8}\) \(52\)
default \(-\frac {1}{2 x^{2} \sqrt {x^{2}+x +1}}+\frac {5}{4 x \sqrt {x^{2}+x +1}}+\frac {3}{8 \sqrt {x^{2}+x +1}}+\frac {\frac {37}{24}+\frac {37 x}{12}}{\sqrt {x^{2}+x +1}}-\frac {3 \arctanh \left (\frac {2+x}{2 \sqrt {x^{2}+x +1}}\right )}{8}\) \(69\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(x^2+x+1)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/12*(37*x^3+23*x^2+15*x-6)/(x^2+x+1)^(1/2)/x^2-3/8*arctanh(1/2*(2+x)/(x^2+x+1)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 1.09, size = 71, normalized size = 0.90 \[ \frac {37 \, x}{12 \, \sqrt {x^{2} + x + 1}} + \frac {23}{12 \, \sqrt {x^{2} + x + 1}} + \frac {5}{4 \, \sqrt {x^{2} + x + 1} x} - \frac {1}{2 \, \sqrt {x^{2} + x + 1} x^{2}} - \frac {3}{8} \, \operatorname {arsinh}\left (\frac {\sqrt {3} x}{3 \, {\left | x \right |}} + \frac {2 \, \sqrt {3}}{3 \, {\left | x \right |}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^2+x+1)^(3/2),x, algorithm="maxima")

[Out]

37/12*x/sqrt(x^2 + x + 1) + 23/12/sqrt(x^2 + x + 1) + 5/4/(sqrt(x^2 + x + 1)*x) - 1/2/(sqrt(x^2 + x + 1)*x^2)
- 3/8*arcsinh(1/3*sqrt(3)*x/abs(x) + 2/3*sqrt(3)/abs(x))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{x^3\,{\left (x^2+x+1\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(x + x^2 + 1)^(3/2)),x)

[Out]

int(1/(x^3*(x + x^2 + 1)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{3} \left (x^{2} + x + 1\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(x**2+x+1)**(3/2),x)

[Out]

Integral(1/(x**3*(x**2 + x + 1)**(3/2)), x)

________________________________________________________________________________________