3.270 \(\int \frac {x^3}{(1+x+x^2)^{3/2}} \, dx\)

Optimal. Leaf size=56 \[ -\frac {2 (x+2) x^2}{3 \sqrt {x^2+x+1}}+\frac {1}{3} (2 x+5) \sqrt {x^2+x+1}-\frac {3}{2} \sinh ^{-1}\left (\frac {2 x+1}{\sqrt {3}}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 56, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {738, 779, 619, 215} \[ -\frac {2 (x+2) x^2}{3 \sqrt {x^2+x+1}}+\frac {1}{3} (2 x+5) \sqrt {x^2+x+1}-\frac {3}{2} \sinh ^{-1}\left (\frac {2 x+1}{\sqrt {3}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[x^3/(1 + x + x^2)^(3/2),x]

[Out]

(-2*x^2*(2 + x))/(3*Sqrt[1 + x + x^2]) + ((5 + 2*x)*Sqrt[1 + x + x^2])/3 - (3*ArcSinh[(1 + 2*x)/Sqrt[3]])/2

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 619

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*((-4*c)/(b^2 - 4*a*c))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rule 738

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(
d*b - 2*a*e + (2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] + Dist[1/((p + 1)*(b^2 -
 4*a*c)), Int[(d + e*x)^(m - 2)*Simp[e*(2*a*e*(m - 1) + b*d*(2*p - m + 4)) - 2*c*d^2*(2*p + 3) + e*(b*e - 2*d*
c)*(m + 2*p + 2)*x, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] &
& NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, b, c, d,
 e, m, p, x]

Rule 779

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((b
*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 2*c*e*g*(p + 1)*x)*(a + b*x + c*x^2)^(p + 1))/(2*c^2*(p + 1)*(2*p + 3
)), x] + Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p + 3))/(2*c^2*(2*p + 3)), Int[(a
+ b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x^3}{\left (1+x+x^2\right )^{3/2}} \, dx &=-\frac {2 x^2 (2+x)}{3 \sqrt {1+x+x^2}}+\frac {2}{3} \int \frac {x (4+2 x)}{\sqrt {1+x+x^2}} \, dx\\ &=-\frac {2 x^2 (2+x)}{3 \sqrt {1+x+x^2}}+\frac {1}{3} (5+2 x) \sqrt {1+x+x^2}-\frac {3}{2} \int \frac {1}{\sqrt {1+x+x^2}} \, dx\\ &=-\frac {2 x^2 (2+x)}{3 \sqrt {1+x+x^2}}+\frac {1}{3} (5+2 x) \sqrt {1+x+x^2}-\frac {1}{2} \sqrt {3} \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{3}}} \, dx,x,1+2 x\right )\\ &=-\frac {2 x^2 (2+x)}{3 \sqrt {1+x+x^2}}+\frac {1}{3} (5+2 x) \sqrt {1+x+x^2}-\frac {3}{2} \sinh ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 48, normalized size = 0.86 \[ \frac {6 x^2-9 \sqrt {x^2+x+1} \sinh ^{-1}\left (\frac {2 x+1}{\sqrt {3}}\right )+14 x+10}{6 \sqrt {x^2+x+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/(1 + x + x^2)^(3/2),x]

[Out]

(10 + 14*x + 6*x^2 - 9*Sqrt[1 + x + x^2]*ArcSinh[(1 + 2*x)/Sqrt[3]])/(6*Sqrt[1 + x + x^2])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.18, size = 47, normalized size = 0.84 \[ \frac {3 x^2+7 x+5}{3 \sqrt {x^2+x+1}}+\frac {3}{2} \log \left (2 \sqrt {x^2+x+1}-2 x-1\right ) \]

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^3/(1 + x + x^2)^(3/2),x]

[Out]

(5 + 7*x + 3*x^2)/(3*Sqrt[1 + x + x^2]) + (3*Log[-1 - 2*x + 2*Sqrt[1 + x + x^2]])/2

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 64, normalized size = 1.14 \[ \frac {19 \, x^{2} + 18 \, {\left (x^{2} + x + 1\right )} \log \left (-2 \, x + 2 \, \sqrt {x^{2} + x + 1} - 1\right ) + 4 \, {\left (3 \, x^{2} + 7 \, x + 5\right )} \sqrt {x^{2} + x + 1} + 19 \, x + 19}{12 \, {\left (x^{2} + x + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(x^2+x+1)^(3/2),x, algorithm="fricas")

[Out]

1/12*(19*x^2 + 18*(x^2 + x + 1)*log(-2*x + 2*sqrt(x^2 + x + 1) - 1) + 4*(3*x^2 + 7*x + 5)*sqrt(x^2 + x + 1) +
19*x + 19)/(x^2 + x + 1)

________________________________________________________________________________________

giac [A]  time = 0.64, size = 38, normalized size = 0.68 \[ \frac {{\left (3 \, x + 7\right )} x + 5}{3 \, \sqrt {x^{2} + x + 1}} + \frac {3}{2} \, \log \left (-2 \, x + 2 \, \sqrt {x^{2} + x + 1} - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(x^2+x+1)^(3/2),x, algorithm="giac")

[Out]

1/3*((3*x + 7)*x + 5)/sqrt(x^2 + x + 1) + 3/2*log(-2*x + 2*sqrt(x^2 + x + 1) - 1)

________________________________________________________________________________________

maple [A]  time = 0.35, size = 33, normalized size = 0.59




method result size



risch \(\frac {3 x^{2}+7 x +5}{3 \sqrt {x^{2}+x +1}}-\frac {3 \arcsinh \left (\frac {2 \left (\frac {1}{2}+x \right ) \sqrt {3}}{3}\right )}{2}\) \(33\)
trager \(\frac {3 x^{2}+7 x +5}{3 \sqrt {x^{2}+x +1}}+\frac {3 \ln \left (2 \sqrt {x^{2}+x +1}-1-2 x \right )}{2}\) \(40\)
default \(\frac {x^{2}}{\sqrt {x^{2}+x +1}}+\frac {3 x}{2 \sqrt {x^{2}+x +1}}+\frac {5}{4 \sqrt {x^{2}+x +1}}+\frac {\frac {5}{12}+\frac {5 x}{6}}{\sqrt {x^{2}+x +1}}-\frac {3 \arcsinh \left (\frac {2 \left (\frac {1}{2}+x \right ) \sqrt {3}}{3}\right )}{2}\) \(61\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(x^2+x+1)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/3*(3*x^2+7*x+5)/(x^2+x+1)^(1/2)-3/2*arcsinh(2/3*(1/2+x)*3^(1/2))

________________________________________________________________________________________

maxima [A]  time = 1.11, size = 47, normalized size = 0.84 \[ \frac {x^{2}}{\sqrt {x^{2} + x + 1}} + \frac {7 \, x}{3 \, \sqrt {x^{2} + x + 1}} + \frac {5}{3 \, \sqrt {x^{2} + x + 1}} - \frac {3}{2} \, \operatorname {arsinh}\left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(x^2+x+1)^(3/2),x, algorithm="maxima")

[Out]

x^2/sqrt(x^2 + x + 1) + 7/3*x/sqrt(x^2 + x + 1) + 5/3/sqrt(x^2 + x + 1) - 3/2*arcsinh(1/3*sqrt(3)*(2*x + 1))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {x^3}{{\left (x^2+x+1\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(x + x^2 + 1)^(3/2),x)

[Out]

int(x^3/(x + x^2 + 1)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{\left (x^{2} + x + 1\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(x**2+x+1)**(3/2),x)

[Out]

Integral(x**3/(x**2 + x + 1)**(3/2), x)

________________________________________________________________________________________