3.119 \(\int \frac {x}{a^3+x^3} \, dx\)

Optimal. Leaf size=56 \[ \frac {\log \left (a^2-a x+x^2\right )}{6 a}-\frac {\log (a+x)}{3 a}-\frac {\tan ^{-1}\left (\frac {a-2 x}{\sqrt {3} a}\right )}{\sqrt {3} a} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 56, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.546, Rules used = {292, 31, 634, 617, 204, 628} \[ \frac {\log \left (a^2-a x+x^2\right )}{6 a}-\frac {\log (a+x)}{3 a}-\frac {\tan ^{-1}\left (\frac {a-2 x}{\sqrt {3} a}\right )}{\sqrt {3} a} \]

Antiderivative was successfully verified.

[In]

Int[x/(a^3 + x^3),x]

[Out]

-(ArcTan[(a - 2*x)/(Sqrt[3]*a)]/(Sqrt[3]*a)) - Log[a + x]/(3*a) + Log[a^2 - a*x + x^2]/(6*a)

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {x}{a^3+x^3} \, dx &=-\frac {\int \frac {1}{a+x} \, dx}{3 a}+\frac {\int \frac {a+x}{a^2-a x+x^2} \, dx}{3 a}\\ &=-\frac {\log (a+x)}{3 a}+\frac {1}{2} \int \frac {1}{a^2-a x+x^2} \, dx+\frac {\int \frac {-a+2 x}{a^2-a x+x^2} \, dx}{6 a}\\ &=-\frac {\log (a+x)}{3 a}+\frac {\log \left (a^2-a x+x^2\right )}{6 a}+\frac {\operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-\frac {2 x}{a}\right )}{a}\\ &=-\frac {\tan ^{-1}\left (\frac {a-2 x}{\sqrt {3} a}\right )}{\sqrt {3} a}-\frac {\log (a+x)}{3 a}+\frac {\log \left (a^2-a x+x^2\right )}{6 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 50, normalized size = 0.89 \[ \frac {\log \left (a^2-a x+x^2\right )-2 \log (a+x)+2 \sqrt {3} \tan ^{-1}\left (\frac {2 x-a}{\sqrt {3} a}\right )}{6 a} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(a^3 + x^3),x]

[Out]

(2*Sqrt[3]*ArcTan[(-a + 2*x)/(Sqrt[3]*a)] - 2*Log[a + x] + Log[a^2 - a*x + x^2])/(6*a)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.02, size = 59, normalized size = 1.05 \[ \frac {\log \left (a^2-a x+x^2\right )}{6 a}-\frac {\log (a+x)}{3 a}-\frac {\tan ^{-1}\left (\frac {1}{\sqrt {3}}-\frac {2 x}{\sqrt {3} a}\right )}{\sqrt {3} a} \]

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x/(a^3 + x^3),x]

[Out]

-(ArcTan[1/Sqrt[3] - (2*x)/(Sqrt[3]*a)]/(Sqrt[3]*a)) - Log[a + x]/(3*a) + Log[a^2 - a*x + x^2]/(6*a)

________________________________________________________________________________________

fricas [A]  time = 0.84, size = 43, normalized size = 0.77 \[ \frac {2 \, \sqrt {3} \arctan \left (-\frac {\sqrt {3} {\left (a - 2 \, x\right )}}{3 \, a}\right ) + \log \left (a^{2} - a x + x^{2}\right ) - 2 \, \log \left (a + x\right )}{6 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a^3+x^3),x, algorithm="fricas")

[Out]

1/6*(2*sqrt(3)*arctan(-1/3*sqrt(3)*(a - 2*x)/a) + log(a^2 - a*x + x^2) - 2*log(a + x))/a

________________________________________________________________________________________

giac [A]  time = 1.11, size = 50, normalized size = 0.89 \[ \frac {\sqrt {3} \arctan \left (-\frac {\sqrt {3} {\left (a - 2 \, x\right )}}{3 \, a}\right )}{3 \, a} + \frac {\log \left (a^{2} - a x + x^{2}\right )}{6 \, a} - \frac {\log \left ({\left | a + x \right |}\right )}{3 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a^3+x^3),x, algorithm="giac")

[Out]

1/3*sqrt(3)*arctan(-1/3*sqrt(3)*(a - 2*x)/a)/a + 1/6*log(a^2 - a*x + x^2)/a - 1/3*log(abs(a + x))/a

________________________________________________________________________________________

maple [A]  time = 0.28, size = 51, normalized size = 0.91




method result size



default \(\frac {\frac {\ln \left (a^{2}-a x +x^{2}\right )}{2}+\sqrt {3}\, \arctan \left (\frac {\left (2 x -a \right ) \sqrt {3}}{3 a}\right )}{3 a}-\frac {\ln \left (a +x \right )}{3 a}\) \(51\)
risch \(\frac {\ln \left (4 a^{2}-4 a x +4 x^{2}\right )}{6 a}+\frac {\sqrt {3}\, \arctan \left (\frac {\left (2 x -a \right ) \sqrt {3}}{3 a}\right )}{3 a}-\frac {\ln \left (a +x \right )}{3 a}\) \(56\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a^3+x^3),x,method=_RETURNVERBOSE)

[Out]

1/3/a*(1/2*ln(a^2-a*x+x^2)+3^(1/2)*arctan(1/3*(2*x-a)*3^(1/2)/a))-1/3*ln(a+x)/a

________________________________________________________________________________________

maxima [A]  time = 0.96, size = 49, normalized size = 0.88 \[ \frac {\sqrt {3} \arctan \left (-\frac {\sqrt {3} {\left (a - 2 \, x\right )}}{3 \, a}\right )}{3 \, a} + \frac {\log \left (a^{2} - a x + x^{2}\right )}{6 \, a} - \frac {\log \left (a + x\right )}{3 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a^3+x^3),x, algorithm="maxima")

[Out]

1/3*sqrt(3)*arctan(-1/3*sqrt(3)*(a - 2*x)/a)/a + 1/6*log(a^2 - a*x + x^2)/a - 1/3*log(a + x)/a

________________________________________________________________________________________

mupad [B]  time = 0.12, size = 68, normalized size = 1.21 \[ -\frac {\ln \left (a+x\right )}{3\,a}-\frac {\ln \left (x+\frac {a\,{\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{4}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,a}+\frac {\ln \left (x+\frac {a\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{4}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a^3 + x^3),x)

[Out]

(log(x + (a*(3^(1/2)*1i + 1)^2)/4)*(3^(1/2)*1i + 1))/(6*a) - (log(x + (a*(3^(1/2)*1i - 1)^2)/4)*(3^(1/2)*1i -
1))/(6*a) - log(a + x)/(3*a)

________________________________________________________________________________________

sympy [C]  time = 0.13, size = 71, normalized size = 1.27 \[ \frac {- \frac {\log {\left (a + x \right )}}{3} + \left (\frac {1}{6} - \frac {\sqrt {3} i}{6}\right ) \log {\left (9 a \left (\frac {1}{6} - \frac {\sqrt {3} i}{6}\right )^{2} + x \right )} + \left (\frac {1}{6} + \frac {\sqrt {3} i}{6}\right ) \log {\left (9 a \left (\frac {1}{6} + \frac {\sqrt {3} i}{6}\right )^{2} + x \right )}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a**3+x**3),x)

[Out]

(-log(a + x)/3 + (1/6 - sqrt(3)*I/6)*log(9*a*(1/6 - sqrt(3)*I/6)**2 + x) + (1/6 + sqrt(3)*I/6)*log(9*a*(1/6 +
sqrt(3)*I/6)**2 + x))/a

________________________________________________________________________________________