3.202 \(\int \frac {3+2 x}{3 x+x^3} \, dx\)

Optimal. Leaf size=28 \[ -\frac {1}{2} \log \left (x^2+3\right )+\log (x)+\frac {2 \tan ^{-1}\left (\frac {x}{\sqrt {3}}\right )}{\sqrt {3}} \]

[Out]

ln(x)-1/2*ln(x^2+3)+2/3*arctan(1/3*x*3^(1/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {1593, 801, 635, 203, 260} \[ -\frac {1}{2} \log \left (x^2+3\right )+\log (x)+\frac {2 \tan ^{-1}\left (\frac {x}{\sqrt {3}}\right )}{\sqrt {3}} \]

Antiderivative was successfully verified.

[In]

Int[(3 + 2*x)/(3*x + x^3),x]

[Out]

(2*ArcTan[x/Sqrt[3]])/Sqrt[3] + Log[x] - Log[3 + x^2]/2

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 801

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(
(d + e*x)^m*(f + g*x))/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && Integer
Q[m]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rubi steps

\begin {align*} \int \frac {3+2 x}{3 x+x^3} \, dx &=\int \frac {3+2 x}{x \left (3+x^2\right )} \, dx\\ &=\int \left (\frac {1}{x}+\frac {2-x}{3+x^2}\right ) \, dx\\ &=\log (x)+\int \frac {2-x}{3+x^2} \, dx\\ &=\log (x)+2 \int \frac {1}{3+x^2} \, dx-\int \frac {x}{3+x^2} \, dx\\ &=\frac {2 \tan ^{-1}\left (\frac {x}{\sqrt {3}}\right )}{\sqrt {3}}+\log (x)-\frac {1}{2} \log \left (3+x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 28, normalized size = 1.00 \[ -\frac {1}{2} \log \left (x^2+3\right )+\log (x)+\frac {2 \tan ^{-1}\left (\frac {x}{\sqrt {3}}\right )}{\sqrt {3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(3 + 2*x)/(3*x + x^3),x]

[Out]

(2*ArcTan[x/Sqrt[3]])/Sqrt[3] + Log[x] - Log[3 + x^2]/2

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 23, normalized size = 0.82 \[ \frac {2}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} x\right ) - \frac {1}{2} \, \log \left (x^{2} + 3\right ) + \log \relax (x) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+2*x)/(x^3+3*x),x, algorithm="fricas")

[Out]

2/3*sqrt(3)*arctan(1/3*sqrt(3)*x) - 1/2*log(x^2 + 3) + log(x)

________________________________________________________________________________________

giac [A]  time = 0.96, size = 24, normalized size = 0.86 \[ \frac {2}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} x\right ) - \frac {1}{2} \, \log \left (x^{2} + 3\right ) + \log \left ({\left | x \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+2*x)/(x^3+3*x),x, algorithm="giac")

[Out]

2/3*sqrt(3)*arctan(1/3*sqrt(3)*x) - 1/2*log(x^2 + 3) + log(abs(x))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 24, normalized size = 0.86 \[ \frac {2 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, x}{3}\right )}{3}+\ln \relax (x )-\frac {\ln \left (x^{2}+3\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x+3)/(x^3+3*x),x)

[Out]

ln(x)-1/2*ln(x^2+3)+2/3*arctan(1/3*3^(1/2)*x)*3^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.39, size = 23, normalized size = 0.82 \[ \frac {2}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} x\right ) - \frac {1}{2} \, \log \left (x^{2} + 3\right ) + \log \relax (x) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+2*x)/(x^3+3*x),x, algorithm="maxima")

[Out]

2/3*sqrt(3)*arctan(1/3*sqrt(3)*x) - 1/2*log(x^2 + 3) + log(x)

________________________________________________________________________________________

mupad [B]  time = 0.30, size = 55, normalized size = 1.96 \[ \ln \relax (x)-\frac {\ln \left (x+\sqrt {3}\,1{}\mathrm {i}\right )}{2}-\frac {\ln \left (x-\sqrt {3}\,1{}\mathrm {i}\right )}{2}-\frac {\sqrt {3}\,\ln \left (x-\sqrt {3}\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{3}+\frac {\sqrt {3}\,\ln \left (x+\sqrt {3}\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x + 3)/(3*x + x^3),x)

[Out]

log(x) - log(x + 3^(1/2)*1i)/2 - log(x - 3^(1/2)*1i)/2 - (3^(1/2)*log(x - 3^(1/2)*1i)*1i)/3 + (3^(1/2)*log(x +
 3^(1/2)*1i)*1i)/3

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 29, normalized size = 1.04 \[ \log {\relax (x )} - \frac {\log {\left (x^{2} + 3 \right )}}{2} + \frac {2 \sqrt {3} \operatorname {atan}{\left (\frac {\sqrt {3} x}{3} \right )}}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+2*x)/(x**3+3*x),x)

[Out]

log(x) - log(x**2 + 3)/2 + 2*sqrt(3)*atan(sqrt(3)*x/3)/3

________________________________________________________________________________________