3.241 \(\int \frac {x}{\sqrt {36+x^4}} \, dx\)

Optimal. Leaf size=12 \[ \frac {1}{2} \sinh ^{-1}\left (\frac {x^2}{6}\right ) \]

[Out]

1/2*arcsinh(1/6*x^2)

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 12, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {275, 215} \[ \frac {1}{2} \sinh ^{-1}\left (\frac {x^2}{6}\right ) \]

Antiderivative was successfully verified.

[In]

Int[x/Sqrt[36 + x^4],x]

[Out]

ArcSinh[x^2/6]/2

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {x}{\sqrt {36+x^4}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{\sqrt {36+x^2}} \, dx,x,x^2\right )\\ &=\frac {1}{2} \sinh ^{-1}\left (\frac {x^2}{6}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 12, normalized size = 1.00 \[ \frac {1}{2} \sinh ^{-1}\left (\frac {x^2}{6}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x/Sqrt[36 + x^4],x]

[Out]

ArcSinh[x^2/6]/2

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 16, normalized size = 1.33 \[ -\frac {1}{2} \, \log \left (-x^{2} + \sqrt {x^{4} + 36}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x^4+36)^(1/2),x, algorithm="fricas")

[Out]

-1/2*log(-x^2 + sqrt(x^4 + 36))

________________________________________________________________________________________

giac [A]  time = 1.09, size = 16, normalized size = 1.33 \[ -\frac {1}{2} \, \log \left (-x^{2} + \sqrt {x^{4} + 36}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x^4+36)^(1/2),x, algorithm="giac")

[Out]

-1/2*log(-x^2 + sqrt(x^4 + 36))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 9, normalized size = 0.75 \[ \frac {\arcsinh \left (\frac {x^{2}}{6}\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(x^4+36)^(1/2),x)

[Out]

1/2*arcsinh(1/6*x^2)

________________________________________________________________________________________

maxima [B]  time = 0.41, size = 33, normalized size = 2.75 \[ \frac {1}{4} \, \log \left (\frac {\sqrt {x^{4} + 36}}{x^{2}} + 1\right ) - \frac {1}{4} \, \log \left (\frac {\sqrt {x^{4} + 36}}{x^{2}} - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x^4+36)^(1/2),x, algorithm="maxima")

[Out]

1/4*log(sqrt(x^4 + 36)/x^2 + 1) - 1/4*log(sqrt(x^4 + 36)/x^2 - 1)

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 8, normalized size = 0.67 \[ \frac {\mathrm {asinh}\left (\frac {x^2}{6}\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(x^4 + 36)^(1/2),x)

[Out]

asinh(x^2/6)/2

________________________________________________________________________________________

sympy [A]  time = 0.90, size = 7, normalized size = 0.58 \[ \frac {\operatorname {asinh}{\left (\frac {x^{2}}{6} \right )}}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x**4+36)**(1/2),x)

[Out]

asinh(x**2/6)/2

________________________________________________________________________________________