3.190 \(\int \frac {1}{\sqrt {-1+x^2}} \, dx\)

Optimal. Leaf size=12 \[ \tanh ^{-1}\left (\frac {x}{\sqrt {x^2-1}}\right ) \]

[Out]

arctanh(x/(x^2-1)^(1/2))

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 12, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {217, 206} \[ \tanh ^{-1}\left (\frac {x}{\sqrt {x^2-1}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[-1 + x^2],x]

[Out]

ArcTanh[x/Sqrt[-1 + x^2]]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {-1+x^2}} \, dx &=\operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {x}{\sqrt {-1+x^2}}\right )\\ &=\tanh ^{-1}\left (\frac {x}{\sqrt {-1+x^2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.00, size = 38, normalized size = 3.17 \[ \frac {1}{2} \log \left (\frac {x}{\sqrt {x^2-1}}+1\right )-\frac {1}{2} \log \left (1-\frac {x}{\sqrt {x^2-1}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[-1 + x^2],x]

[Out]

-1/2*Log[1 - x/Sqrt[-1 + x^2]] + Log[1 + x/Sqrt[-1 + x^2]]/2

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 14, normalized size = 1.17 \[ -\log \left (-x + \sqrt {x^{2} - 1}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2-1)^(1/2),x, algorithm="fricas")

[Out]

-log(-x + sqrt(x^2 - 1))

________________________________________________________________________________________

giac [A]  time = 1.05, size = 15, normalized size = 1.25 \[ -\log \left ({\left | -x + \sqrt {x^{2} - 1} \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2-1)^(1/2),x, algorithm="giac")

[Out]

-log(abs(-x + sqrt(x^2 - 1)))

________________________________________________________________________________________

maple [A]  time = 0.00, size = 11, normalized size = 0.92 \[ \ln \left (x +\sqrt {x^{2}-1}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2-1)^(1/2),x)

[Out]

ln(x+(x^2-1)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 14, normalized size = 1.17 \[ \log \left (2 \, x + 2 \, \sqrt {x^{2} - 1}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2-1)^(1/2),x, algorithm="maxima")

[Out]

log(2*x + 2*sqrt(x^2 - 1))

________________________________________________________________________________________

mupad [B]  time = 0.20, size = 10, normalized size = 0.83 \[ \ln \left (x+\sqrt {x^2-1}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2 - 1)^(1/2),x)

[Out]

log(x + (x^2 - 1)^(1/2))

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 2, normalized size = 0.17 \[ \operatorname {acosh}{\relax (x )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x**2-1)**(1/2),x)

[Out]

acosh(x)

________________________________________________________________________________________