3.39 \(\int \frac {1-x^2}{(1+x^2) \sqrt {1+x^4}} \, dx\)

Optimal. Leaf size=23 \[ \frac {\tan ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {x^4+1}}\right )}{\sqrt {2}} \]

[Out]

1/2*arctan(x*2^(1/2)/(x^4+1)^(1/2))*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {1699, 203} \[ \frac {\tan ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {x^4+1}}\right )}{\sqrt {2}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - x^2)/((1 + x^2)*Sqrt[1 + x^4]),x]

[Out]

ArcTan[(Sqrt[2]*x)/Sqrt[1 + x^4]]/Sqrt[2]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 1699

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[A, Subst[Int[1/
(d + 2*a*e*x^2), x], x, x/Sqrt[a + c*x^4]], x] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ
[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]

Rubi steps

\begin {align*} \int \frac {1-x^2}{\left (1+x^2\right ) \sqrt {1+x^4}} \, dx &=\operatorname {Subst}\left (\int \frac {1}{1+2 x^2} \, dx,x,\frac {x}{\sqrt {1+x^4}}\right )\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )}{\sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.10, size = 40, normalized size = 1.74 \[ \sqrt [4]{-1} \left (\operatorname {EllipticF}\left (i \sinh ^{-1}\left (\sqrt [4]{-1} x\right ),-1\right )-2 \Pi \left (-i;\left .i \sinh ^{-1}\left (\sqrt [4]{-1} x\right )\right |-1\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - x^2)/((1 + x^2)*Sqrt[1 + x^4]),x]

[Out]

(-1)^(1/4)*(EllipticF[I*ArcSinh[(-1)^(1/4)*x], -1] - 2*EllipticPi[-I, I*ArcSinh[(-1)^(1/4)*x], -1])

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 18, normalized size = 0.78 \[ \frac {1}{2} \, \sqrt {2} \arctan \left (\frac {\sqrt {2} x}{\sqrt {x^{4} + 1}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(x^2+1)/(x^4+1)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(2)*arctan(sqrt(2)*x/sqrt(x^4 + 1))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {x^{2} - 1}{\sqrt {x^{4} + 1} {\left (x^{2} + 1\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(x^2+1)/(x^4+1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x^2 - 1)/(sqrt(x^4 + 1)*(x^2 + 1)), x)

________________________________________________________________________________________

maple [C]  time = 0.02, size = 112, normalized size = 4.87 \[ -\frac {\sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticF \left (\left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) x , i\right )}{\left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) \sqrt {x^{4}+1}}-\frac {2 \left (-1\right )^{\frac {3}{4}} \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticPi \left (\left (-1\right )^{\frac {1}{4}} x , i, -\sqrt {-i}\, \left (-1\right )^{\frac {3}{4}}\right )}{\sqrt {x^{4}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^2+1)/(x^2+1)/(x^4+1)^(1/2),x)

[Out]

-1/(1/2*2^(1/2)+1/2*I*2^(1/2))*(-I*x^2+1)^(1/2)*(I*x^2+1)^(1/2)/(x^4+1)^(1/2)*EllipticF((1/2*2^(1/2)+1/2*I*2^(
1/2))*x,I)-2*(-1)^(3/4)*(-I*x^2+1)^(1/2)*(I*x^2+1)^(1/2)/(x^4+1)^(1/2)*EllipticPi((-1)^(1/4)*x,I,(-I)^(1/2)/(-
1)^(1/4))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\int \frac {x^{2} - 1}{\sqrt {x^{4} + 1} {\left (x^{2} + 1\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(x^2+1)/(x^4+1)^(1/2),x, algorithm="maxima")

[Out]

-integrate((x^2 - 1)/(sqrt(x^4 + 1)*(x^2 + 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 \[ -\int \frac {x^2-1}{\left (x^2+1\right )\,\sqrt {x^4+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^2 - 1)/((x^2 + 1)*(x^4 + 1)^(1/2)),x)

[Out]

-int((x^2 - 1)/((x^2 + 1)*(x^4 + 1)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \frac {x^{2}}{x^{2} \sqrt {x^{4} + 1} + \sqrt {x^{4} + 1}}\, dx - \int \left (- \frac {1}{x^{2} \sqrt {x^{4} + 1} + \sqrt {x^{4} + 1}}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**2+1)/(x**2+1)/(x**4+1)**(1/2),x)

[Out]

-Integral(x**2/(x**2*sqrt(x**4 + 1) + sqrt(x**4 + 1)), x) - Integral(-1/(x**2*sqrt(x**4 + 1) + sqrt(x**4 + 1))
, x)

________________________________________________________________________________________