3.17 \(\int \frac {\log (x+\sqrt {-1+x^2})}{(1+x^2)^{3/2}} \, dx\)

Optimal. Leaf size=32 \[ \frac {x \log \left (\sqrt {x^2-1}+x\right )}{\sqrt {x^2+1}}-\frac {1}{2} \cosh ^{-1}\left (x^2\right ) \]

[Out]

-1/2*arccosh(x^2)+x*ln(x+(x^2-1)^(1/2))/(x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {191, 2554, 276, 52} \[ \frac {x \log \left (\sqrt {x^2-1}+x\right )}{\sqrt {x^2+1}}-\frac {1}{2} \cosh ^{-1}\left (x^2\right ) \]

Antiderivative was successfully verified.

[In]

Int[Log[x + Sqrt[-1 + x^2]]/(1 + x^2)^(3/2),x]

[Out]

-ArcCosh[x^2]/2 + (x*Log[x + Sqrt[-1 + x^2]])/Sqrt[1 + x^2]

Rule 52

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ArcCosh[(b*x)/a]/b, x] /; FreeQ[{a,
 b, c, d}, x] && EqQ[a + c, 0] && EqQ[b - d, 0] && GtQ[a, 0]

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 276

Int[(x_)^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m +
 1, 2*n]}, Dist[1/k, Subst[Int[x^((m + 1)/k - 1)*(a1 + b1*x^(n/k))^p*(a2 + b2*x^(n/k))^p, x], x, x^k], x] /; k
 != 1] /; FreeQ[{a1, b1, a2, b2, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && IntegerQ[m]

Rule 2554

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]

Rubi steps

\begin {align*} \int \frac {\log \left (x+\sqrt {-1+x^2}\right )}{\left (1+x^2\right )^{3/2}} \, dx &=\frac {x \log \left (x+\sqrt {-1+x^2}\right )}{\sqrt {1+x^2}}-\int \frac {x}{\sqrt {-1+x^2} \sqrt {1+x^2}} \, dx\\ &=\frac {x \log \left (x+\sqrt {-1+x^2}\right )}{\sqrt {1+x^2}}-\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+x} \sqrt {1+x}} \, dx,x,x^2\right )\\ &=-\frac {1}{2} \cosh ^{-1}\left (x^2\right )+\frac {x \log \left (x+\sqrt {-1+x^2}\right )}{\sqrt {1+x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.09, size = 89, normalized size = 2.78 \[ \frac {4 x \log \left (\sqrt {x^2-1}+x\right )+\frac {\sqrt {x^2-1} \left (x^2+1\right ) \left (\log \left (1-\frac {x^2}{\sqrt {x^4-1}}\right )-\log \left (\frac {x^2}{\sqrt {x^4-1}}+1\right )\right )}{\sqrt {x^4-1}}}{4 \sqrt {x^2+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Log[x + Sqrt[-1 + x^2]]/(1 + x^2)^(3/2),x]

[Out]

(4*x*Log[x + Sqrt[-1 + x^2]] + (Sqrt[-1 + x^2]*(1 + x^2)*(Log[1 - x^2/Sqrt[-1 + x^4]] - Log[1 + x^2/Sqrt[-1 +
x^4]]))/Sqrt[-1 + x^4])/(4*Sqrt[1 + x^2])

________________________________________________________________________________________

fricas [B]  time = 0.43, size = 58, normalized size = 1.81 \[ \frac {2 \, \sqrt {x^{2} + 1} x \log \left (x + \sqrt {x^{2} - 1}\right ) + {\left (x^{2} + 1\right )} \log \left (-x^{2} + \sqrt {x^{2} + 1} \sqrt {x^{2} - 1}\right )}{2 \, {\left (x^{2} + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(x+(x^2-1)^(1/2))/(x^2+1)^(3/2),x, algorithm="fricas")

[Out]

1/2*(2*sqrt(x^2 + 1)*x*log(x + sqrt(x^2 - 1)) + (x^2 + 1)*log(-x^2 + sqrt(x^2 + 1)*sqrt(x^2 - 1)))/(x^2 + 1)

________________________________________________________________________________________

giac [A]  time = 1.12, size = 36, normalized size = 1.12 \[ \frac {x \log \left (x + \sqrt {x^{2} - 1}\right )}{\sqrt {x^{2} + 1}} + \frac {1}{2} \, \log \left (x^{2} - \sqrt {x^{4} - 1}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(x+(x^2-1)^(1/2))/(x^2+1)^(3/2),x, algorithm="giac")

[Out]

x*log(x + sqrt(x^2 - 1))/sqrt(x^2 + 1) + 1/2*log(x^2 - sqrt(x^4 - 1))

________________________________________________________________________________________

maple [F]  time = 0.10, size = 0, normalized size = 0.00 \[ \int \frac {\ln \left (x +\sqrt {x^{2}-1}\right )}{\left (x^{2}+1\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(x+(x^2-1)^(1/2))/(x^2+1)^(3/2),x)

[Out]

int(ln(x+(x^2-1)^(1/2))/(x^2+1)^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\log \left (x + \sqrt {x^{2} - 1}\right )}{{\left (x^{2} + 1\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(x+(x^2-1)^(1/2))/(x^2+1)^(3/2),x, algorithm="maxima")

[Out]

integrate(log(x + sqrt(x^2 - 1))/(x^2 + 1)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ \int \frac {\ln \left (x+\sqrt {x^2-1}\right )}{{\left (x^2+1\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(log(x + (x^2 - 1)^(1/2))/(x^2 + 1)^(3/2),x)

[Out]

int(log(x + (x^2 - 1)^(1/2))/(x^2 + 1)^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(x+(x**2-1)**(1/2))/(x**2+1)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________