3.16 \(\int \sqrt {\sqrt {2}+\sqrt {x}+\sqrt {2+2 \sqrt {2} \sqrt {x}+2 x}} \, dx\)

Optimal. Leaf size=118 \[ \frac {2 \sqrt {2} \sqrt {\sqrt {x}+\sqrt {2} \sqrt {x+\sqrt {2} \sqrt {x}+1}+\sqrt {2}} \left (3 \sqrt {2} x^{3/2}+\sqrt {2} \sqrt {x}-\sqrt {2} \left (2 \sqrt {2}-\sqrt {x}\right ) \sqrt {x+\sqrt {2} \sqrt {x}+1}+4\right )}{15 \sqrt {x}} \]

[Out]

2/15*2^(1/2)*(4+3*x^(3/2)*2^(1/2)+2^(1/2)*x^(1/2)-2^(1/2)*(2*2^(1/2)-x^(1/2))*(1+x+2^(1/2)*x^(1/2))^(1/2))*(2^
(1/2)+x^(1/2)+2^(1/2)*(1+x+2^(1/2)*x^(1/2))^(1/2))^(1/2)/x^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {2115, 2114} \[ \frac {2 \sqrt {2} \sqrt {\sqrt {x}+\sqrt {2} \sqrt {x+\sqrt {2} \sqrt {x}+1}+\sqrt {2}} \left (3 \sqrt {2} x^{3/2}+\sqrt {2} \sqrt {x}-\sqrt {2} \left (2 \sqrt {2}-\sqrt {x}\right ) \sqrt {x+\sqrt {2} \sqrt {x}+1}+4\right )}{15 \sqrt {x}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sqrt[2] + Sqrt[x] + Sqrt[2 + 2*Sqrt[2]*Sqrt[x] + 2*x]],x]

[Out]

(2*Sqrt[2]*Sqrt[Sqrt[2] + Sqrt[x] + Sqrt[2]*Sqrt[1 + Sqrt[2]*Sqrt[x] + x]]*(4 + Sqrt[2]*Sqrt[x] + 3*Sqrt[2]*x^
(3/2) - Sqrt[2]*(2*Sqrt[2] - Sqrt[x])*Sqrt[1 + Sqrt[2]*Sqrt[x] + x]))/(15*Sqrt[x])

Rule 2114

Int[((g_.) + (h_.)*(x_))*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]], x_Symbol] :
> Simp[(2*(f*(5*b*c*g^2 - 2*b^2*g*h - 3*a*c*g*h + 2*a*b*h^2) + c*f*(10*c*g^2 - b*g*h + a*h^2)*x + 9*c^2*f*g*h*
x^2 + 3*c^2*f*h^2*x^3 - (e*g - d*h)*(5*c*g - 2*b*h + c*h*x)*Sqrt[a + b*x + c*x^2])*Sqrt[d + e*x + f*Sqrt[a + b
*x + c*x^2]])/(15*c^2*f*(g + h*x)), x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && EqQ[(e*g - d*h)^2 - f^2*(c*g^2
 - b*g*h + a*h^2), 0] && EqQ[2*e^2*g - 2*d*e*h - f^2*(2*c*g - b*h), 0]

Rule 2115

Int[((u_) + (f_.)*((j_.) + (k_.)*Sqrt[v_]))^(n_.)*((g_.) + (h_.)*(x_))^(m_.), x_Symbol] :> Int[(g + h*x)^m*(Ex
pandToSum[u + f*j, x] + f*k*Sqrt[ExpandToSum[v, x]])^n, x] /; FreeQ[{f, g, h, j, k, m, n}, x] && LinearQ[u, x]
 && QuadraticQ[v, x] &&  !(LinearMatchQ[u, x] && QuadraticMatchQ[v, x] && (EqQ[j, 0] || EqQ[f, 1])) && EqQ[(Co
efficient[u, x, 1]*g - h*(Coefficient[u, x, 0] + f*j))^2 - f^2*k^2*(Coefficient[v, x, 2]*g^2 - Coefficient[v,
x, 1]*g*h + Coefficient[v, x, 0]*h^2), 0]

Rubi steps

\begin {align*} \int \sqrt {\sqrt {2}+\sqrt {x}+\sqrt {2+2 \sqrt {2} \sqrt {x}+2 x}} \, dx &=2 \operatorname {Subst}\left (\int x \sqrt {x+\sqrt {2} \left (1+\sqrt {1+\sqrt {2} x+x^2}\right )} \, dx,x,\sqrt {x}\right )\\ &=2 \operatorname {Subst}\left (\int x \sqrt {\sqrt {2}+x+\sqrt {2} \sqrt {1+\sqrt {2} x+x^2}} \, dx,x,\sqrt {x}\right )\\ &=\frac {2 \sqrt {2} \sqrt {\sqrt {2}+\sqrt {x}+\sqrt {2} \sqrt {1+\sqrt {2} \sqrt {x}+x}} \left (4+\sqrt {2} \sqrt {x}+3 \sqrt {2} x^{3/2}-\sqrt {2} \left (2 \sqrt {2}-\sqrt {x}\right ) \sqrt {1+\sqrt {2} \sqrt {x}+x}\right )}{15 \sqrt {x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 112, normalized size = 0.95 \[ \frac {2 \sqrt {2} \left (3 \sqrt {2} x^{3/2}+\sqrt {2} \sqrt {x}+\sqrt {2} \left (\sqrt {x}-2 \sqrt {2}\right ) \sqrt {x+\sqrt {2} \sqrt {x}+1}+4\right ) \sqrt {\sqrt {2} \left (\sqrt {x+\sqrt {2} \sqrt {x}+1}+1\right )+\sqrt {x}}}{15 \sqrt {x}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sqrt[2] + Sqrt[x] + Sqrt[2 + 2*Sqrt[2]*Sqrt[x] + 2*x]],x]

[Out]

(2*Sqrt[2]*(4 + Sqrt[2]*Sqrt[x] + 3*Sqrt[2]*x^(3/2) + Sqrt[2]*(-2*Sqrt[2] + Sqrt[x])*Sqrt[1 + Sqrt[2]*Sqrt[x]
+ x])*Sqrt[Sqrt[x] + Sqrt[2]*(1 + Sqrt[1 + Sqrt[2]*Sqrt[x] + x])])/(15*Sqrt[x])

________________________________________________________________________________________

fricas [A]  time = 1.21, size = 73, normalized size = 0.62 \[ \frac {2 \, {\left (6 \, x^{2} + {\left (\sqrt {2} x - 4 \, \sqrt {x}\right )} \sqrt {2 \, \sqrt {2} \sqrt {x} + 2 \, x + 2} + 4 \, \sqrt {2} \sqrt {x} + 2 \, x\right )} \sqrt {\sqrt {2} + \sqrt {2 \, \sqrt {2} \sqrt {x} + 2 \, x + 2} + \sqrt {x}}}{15 \, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2^(1/2)+x^(1/2)+(2+2*x+2*2^(1/2)*x^(1/2))^(1/2))^(1/2),x, algorithm="fricas")

[Out]

2/15*(6*x^2 + (sqrt(2)*x - 4*sqrt(x))*sqrt(2*sqrt(2)*sqrt(x) + 2*x + 2) + 4*sqrt(2)*sqrt(x) + 2*x)*sqrt(sqrt(2
) + sqrt(2*sqrt(2)*sqrt(x) + 2*x + 2) + sqrt(x))/x

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2^(1/2)+x^(1/2)+(2+2*x+2*2^(1/2)*x^(1/2))^(1/2))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choice was
done assuming [x]=[-28]Warning, integration of abs or sign assumes constant sign by intervals (correct if the
argument is real):Check [abs(x)]Warning, need to choose a branch for the root of a polynomial with parameters.
 This might be wrong.The choice was done assuming [x]=[79]sym2poly/r2sym(const gen & e,const index_m & i,const
 vecteur & l) Error: Bad Argument ValueEvaluation time: 0.47

________________________________________________________________________________________

maple [F]  time = 0.22, size = 0, normalized size = 0.00 \[ \int \sqrt {\sqrt {x}+\sqrt {2}+\sqrt {2 x +2 \sqrt {2}\, \sqrt {x}+2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2^(1/2)+x^(1/2)+(2+2*x+2*2^(1/2)*x^(1/2))^(1/2))^(1/2),x)

[Out]

int((2^(1/2)+x^(1/2)+(2+2*x+2*2^(1/2)*x^(1/2))^(1/2))^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {\sqrt {2} + \sqrt {2 \, \sqrt {2} \sqrt {x} + 2 \, x + 2} + \sqrt {x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2^(1/2)+x^(1/2)+(2+2*x+2*2^(1/2)*x^(1/2))^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(sqrt(2) + sqrt(2*sqrt(2)*sqrt(x) + 2*x + 2) + sqrt(x)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \sqrt {\sqrt {2\,x+2\,\sqrt {2}\,\sqrt {x}+2}+\sqrt {2}+\sqrt {x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x + 2*2^(1/2)*x^(1/2) + 2)^(1/2) + 2^(1/2) + x^(1/2))^(1/2),x)

[Out]

int(((2*x + 2*2^(1/2)*x^(1/2) + 2)^(1/2) + 2^(1/2) + x^(1/2))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {\sqrt {x} + \sqrt {2 \sqrt {2} \sqrt {x} + 2 x + 2} + \sqrt {2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2**(1/2)+x**(1/2)+(2+2*x+2*2**(1/2)*x**(1/2))**(1/2))**(1/2),x)

[Out]

Integral(sqrt(sqrt(x) + sqrt(2*sqrt(2)*sqrt(x) + 2*x + 2) + sqrt(2)), x)

________________________________________________________________________________________