3.88 \(\int \frac {1}{\sqrt {1-2 x-x^2}} \, dx\)

Optimal. Leaf size=10 \[ \sin ^{-1}\left (\frac {x+1}{\sqrt {2}}\right ) \]

[Out]

arcsin(1/2*(1+x)*2^(1/2))

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 10, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {619, 216} \[ \sin ^{-1}\left (\frac {x+1}{\sqrt {2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[1 - 2*x - x^2],x]

[Out]

ArcSin[(1 + x)/Sqrt[2]]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 619

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*((-4*c)/(b^2 - 4*a*c))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {1-2 x-x^2}} \, dx &=-\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{8}}} \, dx,x,-2-2 x\right )}{2 \sqrt {2}}\\ &=\sin ^{-1}\left (\frac {1+x}{\sqrt {2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 14, normalized size = 1.40 \[ -\sin ^{-1}\left (\frac {-x-1}{\sqrt {2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[1 - 2*x - x^2],x]

[Out]

-ArcSin[(-1 - x)/Sqrt[2]]

________________________________________________________________________________________

fricas [B]  time = 0.39, size = 21, normalized size = 2.10 \[ -2 \, \arctan \left (\frac {\sqrt {-x^{2} - 2 \, x + 1} - 1}{x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-x^2-2*x+1)^(1/2),x, algorithm="fricas")

[Out]

-2*arctan((sqrt(-x^2 - 2*x + 1) - 1)/x)

________________________________________________________________________________________

giac [A]  time = 0.03, size = 9, normalized size = 0.90 \[ \arcsin \left (\frac {1}{2} \, \sqrt {2} {\left (x + 1\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-x^2-2*x+1)^(1/2),x, algorithm="giac")

[Out]

arcsin(1/2*sqrt(2)*(x + 1))

________________________________________________________________________________________

maple [A]  time = 0.00, size = 10, normalized size = 1.00 \[ \arcsin \left (\frac {\left (x +1\right ) \sqrt {2}}{2}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-x^2-2*x+1)^(1/2),x)

[Out]

arcsin(1/2*(x+1)*2^(1/2))

________________________________________________________________________________________

maxima [A]  time = 1.36, size = 11, normalized size = 1.10 \[ -\arcsin \left (-\frac {1}{2} \, \sqrt {2} {\left (x + 1\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-x^2-2*x+1)^(1/2),x, algorithm="maxima")

[Out]

-arcsin(-1/2*sqrt(2)*(x + 1))

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 11, normalized size = 1.10 \[ \mathrm {asin}\left (\frac {\sqrt {8}\,\left (2\,x+2\right )}{8}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1 - x^2 - 2*x)^(1/2),x)

[Out]

asin((8^(1/2)*(2*x + 2))/8)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {- x^{2} - 2 x + 1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-x**2-2*x+1)**(1/2),x)

[Out]

Integral(1/sqrt(-x**2 - 2*x + 1), x)

________________________________________________________________________________________