3.7 Test ﬁle Number [154] 5-Inverse-trig-functions/5.4-Inverse-cotangent/5.4.1-Inverse-cotangent-functions

3.7.1 Mathematica

Integral number [116] $\int \frac {\cot ^{-1}(a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx$

[B]   time = 0.41034 (sec), size = 177 ,normalized size = 7.7 $\frac {6 \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (4 (a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right ) \cot ^{-1}(a+b x)+5 \left (a^2+2 a b x+b^2 x^2+1\right ) \left (2 (a+b x) \cot ^{-1}(a+b x)-3\right )\right )-5 \sqrt [3]{2} \sqrt {\pi } \Gamma \left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right )}{20 b \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (a^2+2 a b x+b^2 x^2+1\right )^{4/3}}$

[In]

Integrate[ArcCot[a + b*x]/(1 + a^2 + 2*a*b*x + b^2*x^2)^(1/3),x]

[Out]

(6*Gamma[11/6]*Gamma[7/3]*(5*(1 + a^2 + 2*a*b*x + b^2*x^2)*(-3 + 2*(a + b*x)*ArcCot[a + b*x]) + 4*(a + b*x)*Ar
cCot[a + b*x]*Hypergeometric2F1[1, 4/3, 11/6, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1)]) - 5*2^(1/3)*Sqrt[Pi]*Gamma[
5/3]*HypergeometricPFQ[{1, 4/3, 4/3}, {11/6, 7/3}, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1)])/(20*b*(1 + a^2 + 2*a*b
*x + b^2*x^2)^(4/3)*Gamma[11/6]*Gamma[7/3])

Integral number [117] $\int \frac {\cot ^{-1}(a+b x)}{\sqrt [3]{\left (1+a^2\right ) c+2 a b c x+b^2 c x^2}} \, dx$

[B]   time = 0.112107 (sec), size = 180 ,normalized size = 7.2 $\frac {c \left (6 \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (4 (a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right ) \cot ^{-1}(a+b x)+5 \left (a^2+2 a b x+b^2 x^2+1\right ) \left (2 (a+b x) \cot ^{-1}(a+b x)-3\right )\right )-5 \sqrt [3]{2} \sqrt {\pi } \Gamma \left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right )\right )}{20 b \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (c \left (a^2+2 a b x+b^2 x^2+1\right )\right )^{4/3}}$

[In]

Integrate[ArcCot[a + b*x]/((1 + a^2)*c + 2*a*b*c*x + b^2*c*x^2)^(1/3),x]

[Out]

(c*(6*Gamma[11/6]*Gamma[7/3]*(5*(1 + a^2 + 2*a*b*x + b^2*x^2)*(-3 + 2*(a + b*x)*ArcCot[a + b*x]) + 4*(a + b*x)
*ArcCot[a + b*x]*Hypergeometric2F1[1, 4/3, 11/6, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1)]) - 5*2^(1/3)*Sqrt[Pi]*Gam
ma[5/3]*HypergeometricPFQ[{1, 4/3, 4/3}, {11/6, 7/3}, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1)]))/(20*b*(c*(1 + a^2
+ 2*a*b*x + b^2*x^2))^(4/3)*Gamma[11/6]*Gamma[7/3])

Integral number [120] $\int \frac {(a+b x)^2 \cot ^{-1}(a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx$

[B]   time = 1.00319 (sec), size = 198 ,normalized size = 6.6 $\frac {3 \left (5 \sqrt [3]{2} \sqrt {\pi } \Gamma \left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right )+\Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (5 \left ((a+b x)^2+1\right ) \left (3 \left ((a+b x)^2+7\right )+4 (a+b x) \left ((a+b x)^2-2\right ) \cot ^{-1}(a+b x)\right )-24 (a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right ) \cot ^{-1}(a+b x)\right )\right )}{140 b \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \sqrt [3]{a^2+2 a b x+b^2 x^2+1} \left ((a+b x)^2+1\right )}$

[In]

Integrate[((a + b*x)^2*ArcCot[a + b*x])/(1 + a^2 + 2*a*b*x + b^2*x^2)^(1/3),x]

[Out]

(3*(Gamma[11/6]*Gamma[7/3]*(5*(1 + (a + b*x)^2)*(3*(7 + (a + b*x)^2) + 4*(a + b*x)*(-2 + (a + b*x)^2)*ArcCot[a
+ b*x]) - 24*(a + b*x)*ArcCot[a + b*x]*Hypergeometric2F1[1, 4/3, 11/6, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1)]) +
5*2^(1/3)*Sqrt[Pi]*Gamma[5/3]*HypergeometricPFQ[{1, 4/3, 4/3}, {11/6, 7/3}, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1
)]))/(140*b*(1 + a^2 + 2*a*b*x + b^2*x^2)^(1/3)*(1 + (a + b*x)^2)*Gamma[11/6]*Gamma[7/3])

Integral number [121] $\int \frac {(a+b x)^2 \cot ^{-1}(a+b x)}{\sqrt [3]{\left (1+a^2\right ) c+2 a b c x+b^2 c x^2}} \, dx$

[B]   time = 0.224771 (sec), size = 200 ,normalized size = 6.25 $\frac {3 \left (5 \sqrt [3]{2} \sqrt {\pi } \Gamma \left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right )+\Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (5 \left ((a+b x)^2+1\right ) \left (3 \left ((a+b x)^2+7\right )+4 (a+b x) \left ((a+b x)^2-2\right ) \cot ^{-1}(a+b x)\right )-24 (a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right ) \cot ^{-1}(a+b x)\right )\right )}{140 b \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left ((a+b x)^2+1\right ) \sqrt [3]{c \left (a^2+2 a b x+b^2 x^2+1\right )}}$

[In]

Integrate[((a + b*x)^2*ArcCot[a + b*x])/((1 + a^2)*c + 2*a*b*c*x + b^2*c*x^2)^(1/3),x]

[Out]

(3*(Gamma[11/6]*Gamma[7/3]*(5*(1 + (a + b*x)^2)*(3*(7 + (a + b*x)^2) + 4*(a + b*x)*(-2 + (a + b*x)^2)*ArcCot[a
+ b*x]) - 24*(a + b*x)*ArcCot[a + b*x]*Hypergeometric2F1[1, 4/3, 11/6, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1)]) +
5*2^(1/3)*Sqrt[Pi]*Gamma[5/3]*HypergeometricPFQ[{1, 4/3, 4/3}, {11/6, 7/3}, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1
)]))/(140*b*(c*(1 + a^2 + 2*a*b*x + b^2*x^2))^(1/3)*(1 + (a + b*x)^2)*Gamma[11/6]*Gamma[7/3])