### 3.1 Test ﬁle Number [5] 0-Independent-test-suites/Hearn-Problems

#### 3.1.1 Maxima

Integral number [145] $\int x \cos (k \csc (x)) \cot (x) \csc (x) \, dx$

[B]   time = 0.473911 (sec), size = 240 ,normalized size = 17.14 $-\frac {{\left (x e^{\left (\frac {4 \, k \cos \left (2 \, x\right ) \cos \relax (x)}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1} + \frac {4 \, k \sin \left (2 \, x\right ) \sin \relax (x)}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )} + x e^{\left (\frac {4 \, k \cos \relax (x)}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )}\right )} e^{\left (-\frac {2 \, k \cos \left (2 \, x\right ) \cos \relax (x)}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1} - \frac {2 \, k \sin \left (2 \, x\right ) \sin \relax (x)}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1} - \frac {2 \, k \cos \relax (x)}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )} \sin \left (\frac {2 \, {\left (k \cos \relax (x) \sin \left (2 \, x\right ) - k \cos \left (2 \, x\right ) \sin \relax (x) + k \sin \relax (x)\right )}}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )}{2 \, k}$

[In]

integrate(x*cos(x)*cos(k/sin(x))/sin(x)^2,x, algorithm=""maxima"")

[Out]

-1/2*(x*e^(4*k*cos(2*x)*cos(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1) + 4*k*sin(2*x)*sin(x)/(cos(2*x)^2 +
sin(2*x)^2 - 2*cos(2*x) + 1)) + x*e^(4*k*cos(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1)))*e^(-2*k*cos(2*x)*
cos(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1) - 2*k*sin(2*x)*sin(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x)
+ 1) - 2*k*cos(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1))*sin(2*(k*cos(x)*sin(2*x) - k*cos(2*x)*sin(x) + k
*sin(x))/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1))/k