Optimal. Leaf size=37 \[ \frac{\sqrt{\pi } f^a \text{Erfi}\left (\sqrt{b} x \sqrt{\log (f)}\right )}{2 \sqrt{b} \sqrt{\log (f)}} \]
[Out]
_______________________________________________________________________________________
Rubi [A] time = 0.0182608, antiderivative size = 37, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 9, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111 \[ \frac{\sqrt{\pi } f^a \text{Erfi}\left (\sqrt{b} x \sqrt{\log (f)}\right )}{2 \sqrt{b} \sqrt{\log (f)}} \]
Antiderivative was successfully verified.
[In] Int[f^(a + b*x^2),x]
[Out]
_______________________________________________________________________________________
Rubi in Sympy [A] time = 2.03141, size = 36, normalized size = 0.97 \[ \frac{\sqrt{\pi } f^{a} \operatorname{erfi}{\left (\sqrt{b} x \sqrt{\log{\left (f \right )}} \right )}}{2 \sqrt{b} \sqrt{\log{\left (f \right )}}} \]
Verification of antiderivative is not currently implemented for this CAS.
[In] rubi_integrate(f**(b*x**2+a),x)
[Out]
_______________________________________________________________________________________
Mathematica [A] time = 0.00635998, size = 37, normalized size = 1. \[ \frac{\sqrt{\pi } f^a \text{Erfi}\left (\sqrt{b} x \sqrt{\log (f)}\right )}{2 \sqrt{b} \sqrt{\log (f)}} \]
Antiderivative was successfully verified.
[In] Integrate[f^(a + b*x^2),x]
[Out]
_______________________________________________________________________________________
Maple [A] time = 0.019, size = 26, normalized size = 0.7 \[{\frac{\sqrt{\pi }{f}^{a}}{2}{\it Erf} \left ( \sqrt{-b\ln \left ( f \right ) }x \right ){\frac{1}{\sqrt{-b\ln \left ( f \right ) }}}} \]
Verification of antiderivative is not currently implemented for this CAS.
[In] int(f^(b*x^2+a),x)
[Out]
_______________________________________________________________________________________
Maxima [A] time = 0.778535, size = 34, normalized size = 0.92 \[ \frac{\sqrt{\pi } f^{a} \operatorname{erf}\left (\sqrt{-b \log \left (f\right )} x\right )}{2 \, \sqrt{-b \log \left (f\right )}} \]
Verification of antiderivative is not currently implemented for this CAS.
[In] integrate(f^(b*x^2 + a),x, algorithm="maxima")
[Out]
_______________________________________________________________________________________
Fricas [A] time = 0.251391, size = 34, normalized size = 0.92 \[ \frac{\sqrt{\pi } f^{a} \operatorname{erf}\left (\sqrt{-b \log \left (f\right )} x\right )}{2 \, \sqrt{-b \log \left (f\right )}} \]
Verification of antiderivative is not currently implemented for this CAS.
[In] integrate(f^(b*x^2 + a),x, algorithm="fricas")
[Out]
_______________________________________________________________________________________
Sympy [F] time = 0., size = 0, normalized size = 0. \[ \int f^{a + b x^{2}}\, dx \]
Verification of antiderivative is not currently implemented for this CAS.
[In] integrate(f**(b*x**2+a),x)
[Out]
_______________________________________________________________________________________
GIAC/XCAS [A] time = 0.249239, size = 38, normalized size = 1.03 \[ -\frac{\sqrt{\pi } \operatorname{erf}\left (-\sqrt{-b{\rm ln}\left (f\right )} x\right ) e^{\left (a{\rm ln}\left (f\right )\right )}}{2 \, \sqrt{-b{\rm ln}\left (f\right )}} \]
Verification of antiderivative is not currently implemented for this CAS.
[In] integrate(f^(b*x^2 + a),x, algorithm="giac")
[Out]