3.500 \(\int \frac{2^{2 x}}{\sqrt{a-2^x b}} \, dx\)

Optimal. Leaf size=46 \[ \frac{2 \left (a-b 2^x\right )^{3/2}}{3 b^2 \log (2)}-\frac{2 a \sqrt{a-b 2^x}}{b^2 \log (2)} \]

[Out]

(-2*a*Sqrt[a - 2^x*b])/(b^2*Log[2]) + (2*(a - 2^x*b)^(3/2))/(3*b^2*Log[2])

_______________________________________________________________________________________

Rubi [A]  time = 0.0827079, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111 \[ \frac{2 \left (a-b 2^x\right )^{3/2}}{3 b^2 \log (2)}-\frac{2 a \sqrt{a-b 2^x}}{b^2 \log (2)} \]

Antiderivative was successfully verified.

[In]  Int[2^(2*x)/Sqrt[a - 2^x*b],x]

[Out]

(-2*a*Sqrt[a - 2^x*b])/(b^2*Log[2]) + (2*(a - 2^x*b)^(3/2))/(3*b^2*Log[2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 10.1111, size = 39, normalized size = 0.85 \[ - \frac{2 a \sqrt{- 2^{x} b + a}}{b^{2} \log{\left (2 \right )}} + \frac{2 \left (- 2^{x} b + a\right )^{\frac{3}{2}}}{3 b^{2} \log{\left (2 \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(2**(2*x)/(a-2**x*b)**(1/2),x)

[Out]

-2*a*sqrt(-2**x*b + a)/(b**2*log(2)) + 2*(-2**x*b + a)**(3/2)/(3*b**2*log(2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.0198677, size = 57, normalized size = 1.24 \[ \frac{2 \left (2 a^2 \left (\sqrt{1-\frac{b 2^x}{a}}-1\right )+a b 2^x+b^2 4^x\right )}{b^2 \log (8) \sqrt{a-b 2^x}} \]

Antiderivative was successfully verified.

[In]  Integrate[2^(2*x)/Sqrt[a - 2^x*b],x]

[Out]

(2*(2^x*a*b + 4^x*b^2 + 2*a^2*(-1 + Sqrt[1 - (2^x*b)/a])))/(b^2*Sqrt[a - 2^x*b]*
Log[8])

_______________________________________________________________________________________

Maple [A]  time = 0.018, size = 29, normalized size = 0.6 \[ -{\frac{2\,{2}^{x}b+4\,a}{3\,{b}^{2}\ln \left ( 2 \right ) }\sqrt{a-{2}^{x}b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(2^(2*x)/(a-2^x*b)^(1/2),x)

[Out]

-2/3*(2^x*b+2*a)/b^2*(a-2^x*b)^(1/2)/ln(2)

_______________________________________________________________________________________

Maxima [A]  time = 0.771617, size = 54, normalized size = 1.17 \[ \frac{2 \,{\left (-2^{x} b + a\right )}^{\frac{3}{2}}}{3 \, b^{2} \log \left (2\right )} - \frac{2 \, \sqrt{-2^{x} b + a} a}{b^{2} \log \left (2\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(2^(2*x)/sqrt(-2^x*b + a),x, algorithm="maxima")

[Out]

2/3*(-2^x*b + a)^(3/2)/(b^2*log(2)) - 2*sqrt(-2^x*b + a)*a/(b^2*log(2))

_______________________________________________________________________________________

Fricas [A]  time = 0.255499, size = 38, normalized size = 0.83 \[ -\frac{2 \,{\left (2^{x} b + 2 \, a\right )} \sqrt{-2^{x} b + a}}{3 \, b^{2} \log \left (2\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(2^(2*x)/sqrt(-2^x*b + a),x, algorithm="fricas")

[Out]

-2/3*(2^x*b + 2*a)*sqrt(-2^x*b + a)/(b^2*log(2))

_______________________________________________________________________________________

Sympy [A]  time = 1.6277, size = 60, normalized size = 1.3 \[ \begin{cases} - \frac{2 \cdot 2^{x} \sqrt{- 2^{x} b + a}}{3 b \log{\left (2 \right )}} - \frac{4 a \sqrt{- 2^{x} b + a}}{3 b^{2} \log{\left (2 \right )}} & \text{for}\: b \neq 0 \\\frac{2^{2 x}}{2 \sqrt{a} \log{\left (2 \right )}} & \text{otherwise} \end{cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(2**(2*x)/(a-2**x*b)**(1/2),x)

[Out]

Piecewise((-2*2**x*sqrt(-2**x*b + a)/(3*b*log(2)) - 4*a*sqrt(-2**x*b + a)/(3*b**
2*log(2)), Ne(b, 0)), (2**(2*x)/(2*sqrt(a)*log(2)), True))

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.243564, size = 45, normalized size = 0.98 \[ \frac{2 \,{\left ({\left (-2^{x} b + a\right )}^{\frac{3}{2}} - 3 \, \sqrt{-2^{x} b + a} a\right )}}{3 \, b^{2}{\rm ln}\left (2\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(2^(2*x)/sqrt(-2^x*b + a),x, algorithm="giac")

[Out]

2/3*((-2^x*b + a)^(3/2) - 3*sqrt(-2^x*b + a)*a)/(b^2*ln(2))