3.865 \(\int \frac{1}{\sqrt{a+b c^4+4 b c^3 d x+6 b c^2 d^2 x^2+4 b c d^3 x^3+b d^4 x^4}} \, dx\)

Optimal. Leaf size=131 \[ \frac{\left (\sqrt{a}+\sqrt{b} d^2 \left (\frac{c}{d}+x\right )^2\right ) \sqrt{\frac{a+b d^4 \left (\frac{c}{d}+x\right )^4}{\left (\sqrt{a}+\sqrt{b} d^2 \left (\frac{c}{d}+x\right )^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} (c+d x)}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} d \sqrt{a+b d^4 \left (\frac{c}{d}+x\right )^4}} \]

[Out]

((Sqrt[a] + Sqrt[b]*d^2*(c/d + x)^2)*Sqrt[(a + b*d^4*(c/d + x)^4)/(Sqrt[a] + Sqr
t[b]*d^2*(c/d + x)^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*(c + d*x))/a^(1/4)], 1/2])/
(2*a^(1/4)*b^(1/4)*d*Sqrt[a + b*d^4*(c/d + x)^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.202158, antiderivative size = 131, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 49, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.041 \[ \frac{\left (\sqrt{a}+\sqrt{b} (c+d x)^2\right ) \sqrt{\frac{a+b (c+d x)^4}{\left (\sqrt{a}+\sqrt{b} (c+d x)^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} (c+d x)}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} d \sqrt{a+b (c+d x)^4}} \]

Antiderivative was successfully verified.

[In]  Int[1/Sqrt[a + b*c^4 + 4*b*c^3*d*x + 6*b*c^2*d^2*x^2 + 4*b*c*d^3*x^3 + b*d^4*x^4],x]

[Out]

((Sqrt[a] + Sqrt[b]*(c + d*x)^2)*Sqrt[(a + b*(c + d*x)^4)/(Sqrt[a] + Sqrt[b]*(c
+ d*x)^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*(c + d*x))/a^(1/4)], 1/2])/(2*a^(1/4)*b
^(1/4)*d*Sqrt[a + b*(c + d*x)^4])

_______________________________________________________________________________________

Rubi in Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/(b*d**4*x**4+4*b*c*d**3*x**3+6*b*c**2*d**2*x**2+4*b*c**3*d*x+b*c**4+a)**(1/2),x)

[Out]

Timed out

_______________________________________________________________________________________

Mathematica [C]  time = 0.0975455, size = 90, normalized size = 0.69 \[ -\frac{i \sqrt{\frac{a+b (c+d x)^4}{a}} F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} (c+d x)\right )\right |-1\right )}{d \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b (c+d x)^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[1/Sqrt[a + b*c^4 + 4*b*c^3*d*x + 6*b*c^2*d^2*x^2 + 4*b*c*d^3*x^3 + b*d^4*x^4],x]

[Out]

((-I)*Sqrt[(a + b*(c + d*x)^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*
(c + d*x)], -1])/(Sqrt[(I*Sqrt[b])/Sqrt[a]]*d*Sqrt[a + b*(c + d*x)^4])

_______________________________________________________________________________________

Maple [C]  time = 0.036, size = 1036, normalized size = 7.9 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/(b*d^4*x^4+4*b*c*d^3*x^3+6*b*c^2*d^2*x^2+4*b*c^3*d*x+b*c^4+a)^(1/2),x)

[Out]

2*((1/b*(-a*b^3)^(1/4)-c)/d-(-I/b*(-a*b^3)^(1/4)-c)/d)*(((-I/b*(-a*b^3)^(1/4)-c)
/d-(I/b*(-a*b^3)^(1/4)-c)/d)*(x-(1/b*(-a*b^3)^(1/4)-c)/d)/((-I/b*(-a*b^3)^(1/4)-
c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/(x-(I/b*(-a*b^3)^(1/4)-c)/d))^(1/2)*(x-(I/b*(-a*b
^3)^(1/4)-c)/d)^2*(((I/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)*(x-(-1/b*
(-a*b^3)^(1/4)-c)/d)/((-1/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/(x-(I/
b*(-a*b^3)^(1/4)-c)/d))^(1/2)*(((I/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/
d)*(x-(-I/b*(-a*b^3)^(1/4)-c)/d)/((-I/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-
c)/d)/(x-(I/b*(-a*b^3)^(1/4)-c)/d))^(1/2)/((-I/b*(-a*b^3)^(1/4)-c)/d-(I/b*(-a*b^
3)^(1/4)-c)/d)/((I/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/(b*d^4*(x-(1/
b*(-a*b^3)^(1/4)-c)/d)*(x-(I/b*(-a*b^3)^(1/4)-c)/d)*(x-(-1/b*(-a*b^3)^(1/4)-c)/d
)*(x-(-I/b*(-a*b^3)^(1/4)-c)/d))^(1/2)*EllipticF((((-I/b*(-a*b^3)^(1/4)-c)/d-(I/
b*(-a*b^3)^(1/4)-c)/d)*(x-(1/b*(-a*b^3)^(1/4)-c)/d)/((-I/b*(-a*b^3)^(1/4)-c)/d-(
1/b*(-a*b^3)^(1/4)-c)/d)/(x-(I/b*(-a*b^3)^(1/4)-c)/d))^(1/2),(((I/b*(-a*b^3)^(1/
4)-c)/d-(-1/b*(-a*b^3)^(1/4)-c)/d)*((1/b*(-a*b^3)^(1/4)-c)/d-(-I/b*(-a*b^3)^(1/4
)-c)/d)/((1/b*(-a*b^3)^(1/4)-c)/d-(-1/b*(-a*b^3)^(1/4)-c)/d)/((I/b*(-a*b^3)^(1/4
)-c)/d-(-I/b*(-a*b^3)^(1/4)-c)/d))^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{b d^{4} x^{4} + 4 \, b c d^{3} x^{3} + 6 \, b c^{2} d^{2} x^{2} + 4 \, b c^{3} d x + b c^{4} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/sqrt(b*d^4*x^4 + 4*b*c*d^3*x^3 + 6*b*c^2*d^2*x^2 + 4*b*c^3*d*x + b*c^4 + a),x, algorithm="maxima")

[Out]

integrate(1/sqrt(b*d^4*x^4 + 4*b*c*d^3*x^3 + 6*b*c^2*d^2*x^2 + 4*b*c^3*d*x + b*c
^4 + a), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{1}{\sqrt{b d^{4} x^{4} + 4 \, b c d^{3} x^{3} + 6 \, b c^{2} d^{2} x^{2} + 4 \, b c^{3} d x + b c^{4} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/sqrt(b*d^4*x^4 + 4*b*c*d^3*x^3 + 6*b*c^2*d^2*x^2 + 4*b*c^3*d*x + b*c^4 + a),x, algorithm="fricas")

[Out]

integral(1/sqrt(b*d^4*x^4 + 4*b*c*d^3*x^3 + 6*b*c^2*d^2*x^2 + 4*b*c^3*d*x + b*c^
4 + a), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{a + b c^{4} + 4 b c^{3} d x + 6 b c^{2} d^{2} x^{2} + 4 b c d^{3} x^{3} + b d^{4} x^{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(b*d**4*x**4+4*b*c*d**3*x**3+6*b*c**2*d**2*x**2+4*b*c**3*d*x+b*c**4+a)**(1/2),x)

[Out]

Integral(1/sqrt(a + b*c**4 + 4*b*c**3*d*x + 6*b*c**2*d**2*x**2 + 4*b*c*d**3*x**3
 + b*d**4*x**4), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{b d^{4} x^{4} + 4 \, b c d^{3} x^{3} + 6 \, b c^{2} d^{2} x^{2} + 4 \, b c^{3} d x + b c^{4} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/sqrt(b*d^4*x^4 + 4*b*c*d^3*x^3 + 6*b*c^2*d^2*x^2 + 4*b*c^3*d*x + b*c^4 + a),x, algorithm="giac")

[Out]

integrate(1/sqrt(b*d^4*x^4 + 4*b*c*d^3*x^3 + 6*b*c^2*d^2*x^2 + 4*b*c^3*d*x + b*c
^4 + a), x)