3.350 \(\int \frac{\left (d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}\right )^n}{\left (a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}\right )^2} \, dx\)

Optimal. Leaf size=122 \[ -\frac{8 f^4 \left (f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}+d+e x\right )^{n+3} \, _2F_1\left (3,\frac{n+3}{2};\frac{n+5}{2};\frac{\left (d+e x+f \sqrt{\frac{e^2 x^2}{f^2}+\frac{2 d e x}{f^2}+a}\right )^2}{d^2-a f^2}\right )}{e (n+3) \left (d^2-a f^2\right )^3} \]

[Out]

(-8*f^4*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^(3 + n)*Hypergeome
tric2F1[3, (3 + n)/2, (5 + n)/2, (d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)
/f^2])^2/(d^2 - a*f^2)])/(e*(d^2 - a*f^2)^3*(3 + n))

_______________________________________________________________________________________

Rubi [A]  time = 0.439299, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 56, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.054 \[ -\frac{8 f^4 \left (f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}+d+e x\right )^{n+3} \, _2F_1\left (3,\frac{n+3}{2};\frac{n+5}{2};\frac{\left (d+e x+f \sqrt{\frac{e^2 x^2}{f^2}+\frac{2 d e x}{f^2}+a}\right )^2}{d^2-a f^2}\right )}{e (n+3) \left (d^2-a f^2\right )^3} \]

Antiderivative was successfully verified.

[In]  Int[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/(a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2)^2,x]

[Out]

(-8*f^4*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^(3 + n)*Hypergeome
tric2F1[3, (3 + n)/2, (5 + n)/2, (d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)
/f^2])^2/(d^2 - a*f^2)])/(e*(d^2 - a*f^2)^3*(3 + n))

_______________________________________________________________________________________

Rubi in Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((d+e*x+f*(a+2*d*e*x/f**2+e**2*x**2/f**2)**(1/2))**n/(a+2*d*e*x/f**2+e**2*x**2/f**2)**2,x)

[Out]

Timed out

_______________________________________________________________________________________

Mathematica [A]  time = 0.157778, size = 0, normalized size = 0. \[ \int \frac{\left (d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}\right )^n}{\left (a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]  Integrate[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/(a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2)^2,x]

[Out]

Integrate[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/(a + (2*d*e*x)
/f^2 + (e^2*x^2)/f^2)^2, x]

_______________________________________________________________________________________

Maple [F]  time = 0.107, size = 0, normalized size = 0. \[ \int{1 \left ( d+ex+f\sqrt{a+2\,{\frac{dex}{{f}^{2}}}+{\frac{{e}^{2}{x}^{2}}{{f}^{2}}}} \right ) ^{n} \left ( a+2\,{\frac{dex}{{f}^{2}}}+{\frac{{e}^{2}{x}^{2}}{{f}^{2}}} \right ) ^{-2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^2,x)

[Out]

int((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^2,
x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (e x + \sqrt{\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}} f + d\right )}^{n}}{{\left (\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a + 2*d*e*x/f^2)^2,x, algorithm="maxima")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a +
 2*d*e*x/f^2)^2, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (e x + f \sqrt{\frac{e^{2} x^{2} + a f^{2} + 2 \, d e x}{f^{2}}} + d\right )}^{n} f^{4}}{e^{4} x^{4} + 4 \, d e^{3} x^{3} + a^{2} f^{4} + 4 \, a d e f^{2} x + 2 \,{\left (a e^{2} f^{2} + 2 \, d^{2} e^{2}\right )} x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a + 2*d*e*x/f^2)^2,x, algorithm="fricas")

[Out]

integral((e*x + f*sqrt((e^2*x^2 + a*f^2 + 2*d*e*x)/f^2) + d)^n*f^4/(e^4*x^4 + 4*
d*e^3*x^3 + a^2*f^4 + 4*a*d*e*f^2*x + 2*(a*e^2*f^2 + 2*d^2*e^2)*x^2), x)

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d+e*x+f*(a+2*d*e*x/f**2+e**2*x**2/f**2)**(1/2))**n/(a+2*d*e*x/f**2+e**2*x**2/f**2)**2,x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (e x + \sqrt{\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}} f + d\right )}^{n}}{{\left (\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a + 2*d*e*x/f^2)^2,x, algorithm="giac")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a +
 2*d*e*x/f^2)^2, x)