3.328 \(\int \frac{\left (x+\sqrt{a+x^2}\right )^n}{\left (a+x^2\right )^2} \, dx\)

Optimal. Leaf size=59 \[ \frac{8 \left (\sqrt{a+x^2}+x\right )^{n+3} \, _2F_1\left (3,\frac{n+3}{2};\frac{n+5}{2};-\frac{\left (x+\sqrt{x^2+a}\right )^2}{a}\right )}{a^3 (n+3)} \]

[Out]

(8*(x + Sqrt[a + x^2])^(3 + n)*Hypergeometric2F1[3, (3 + n)/2, (5 + n)/2, -((x +
 Sqrt[a + x^2])^2/a)])/(a^3*(3 + n))

_______________________________________________________________________________________

Rubi [A]  time = 0.114322, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095 \[ \frac{8 \left (\sqrt{a+x^2}+x\right )^{n+3} \, _2F_1\left (3,\frac{n+3}{2};\frac{n+5}{2};-\frac{\left (x+\sqrt{x^2+a}\right )^2}{a}\right )}{a^3 (n+3)} \]

Antiderivative was successfully verified.

[In]  Int[(x + Sqrt[a + x^2])^n/(a + x^2)^2,x]

[Out]

(8*(x + Sqrt[a + x^2])^(3 + n)*Hypergeometric2F1[3, (3 + n)/2, (5 + n)/2, -((x +
 Sqrt[a + x^2])^2/a)])/(a^3*(3 + n))

_______________________________________________________________________________________

Rubi in Sympy [F]  time = 0., size = 0, normalized size = 0. \[ 8 \int ^{x + \sqrt{a + x^{2}}} \frac{x^{2} x^{n}}{\left (a + x^{2}\right )^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((x+(x**2+a)**(1/2))**n/(x**2+a)**2,x)

[Out]

8*Integral(x**2*x**n/(a + x**2)**3, (x, x + sqrt(a + x**2)))

_______________________________________________________________________________________

Mathematica [A]  time = 0.0420448, size = 0, normalized size = 0. \[ \int \frac{\left (x+\sqrt{a+x^2}\right )^n}{\left (a+x^2\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]  Integrate[(x + Sqrt[a + x^2])^n/(a + x^2)^2,x]

[Out]

Integrate[(x + Sqrt[a + x^2])^n/(a + x^2)^2, x]

_______________________________________________________________________________________

Maple [F]  time = 0.025, size = 0, normalized size = 0. \[ \int{\frac{1}{ \left ({x}^{2}+a \right ) ^{2}} \left ( x+\sqrt{{x}^{2}+a} \right ) ^{n}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((x+(x^2+a)^(1/2))^n/(x^2+a)^2,x)

[Out]

int((x+(x^2+a)^(1/2))^n/(x^2+a)^2,x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (x + \sqrt{x^{2} + a}\right )}^{n}}{{\left (x^{2} + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((x + sqrt(x^2 + a))^n/(x^2 + a)^2,x, algorithm="maxima")

[Out]

integrate((x + sqrt(x^2 + a))^n/(x^2 + a)^2, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (x + \sqrt{x^{2} + a}\right )}^{n}}{x^{4} + 2 \, a x^{2} + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((x + sqrt(x^2 + a))^n/(x^2 + a)^2,x, algorithm="fricas")

[Out]

integral((x + sqrt(x^2 + a))^n/(x^4 + 2*a*x^2 + a^2), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\left (x + \sqrt{a + x^{2}}\right )^{n}}{\left (a + x^{2}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((x+(x**2+a)**(1/2))**n/(x**2+a)**2,x)

[Out]

Integral((x + sqrt(a + x**2))**n/(a + x**2)**2, x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (x + \sqrt{x^{2} + a}\right )}^{n}}{{\left (x^{2} + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((x + sqrt(x^2 + a))^n/(x^2 + a)^2,x, algorithm="giac")

[Out]

integrate((x + sqrt(x^2 + a))^n/(x^2 + a)^2, x)