3.1652 \(\int \frac{(b+2 c x) \sqrt{d+e x}}{\left (a+b x+c x^2\right )^{5/2}} \, dx\)
Optimal. Leaf size=517 \[ -\frac{2 e \sqrt{d+e x} \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{3 \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right )}+\frac{\sqrt{2} e \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \sqrt{b^2-4 a c} \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}-\frac{4 \sqrt{2} e \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{a+b x+c x^2}}-\frac{2 \sqrt{d+e x}}{3 \left (a+b x+c x^2\right )^{3/2}} \]
[Out]
(-2*Sqrt[d + e*x])/(3*(a + b*x + c*x^2)^(3/2)) - (2*e*Sqrt[d + e*x]*(b*c*d - b^2
*e + 2*a*c*e + c*(2*c*d - b*e)*x))/(3*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*Sqrt
[a + b*x + c*x^2]) + (Sqrt[2]*e*(2*c*d - b*e)*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x +
c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/S
qrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*
a*c])*e)])/(3*Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + a*e^2)*Sqrt[(c*(d + e*x))/(2*c*
d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (4*Sqrt[2]*e*Sqrt[(c*(d
+ e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2
- 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*
c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(3*
Sqrt[b^2 - 4*a*c]*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])
_______________________________________________________________________________________
Rubi [A] time = 1.11216, antiderivative size = 517, normalized size of antiderivative = 1.,
number of steps used = 7, number of rules used = 6, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2
\[ -\frac{2 e \sqrt{d+e x} \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{3 \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right )}+\frac{\sqrt{2} e \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \sqrt{b^2-4 a c} \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}-\frac{4 \sqrt{2} e \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{a+b x+c x^2}}-\frac{2 \sqrt{d+e x}}{3 \left (a+b x+c x^2\right )^{3/2}} \]
Antiderivative was successfully verified.
[In] Int[((b + 2*c*x)*Sqrt[d + e*x])/(a + b*x + c*x^2)^(5/2),x]
[Out]
(-2*Sqrt[d + e*x])/(3*(a + b*x + c*x^2)^(3/2)) - (2*e*Sqrt[d + e*x]*(b*c*d - b^2
*e + 2*a*c*e + c*(2*c*d - b*e)*x))/(3*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*Sqrt
[a + b*x + c*x^2]) + (Sqrt[2]*e*(2*c*d - b*e)*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x +
c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/S
qrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*
a*c])*e)])/(3*Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + a*e^2)*Sqrt[(c*(d + e*x))/(2*c*
d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (4*Sqrt[2]*e*Sqrt[(c*(d
+ e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2
- 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*
c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(3*
Sqrt[b^2 - 4*a*c]*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])
_______________________________________________________________________________________
Rubi in Sympy [F(-1)] time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]
Verification of antiderivative is not currently implemented for this CAS.
[In] rubi_integrate((2*c*x+b)*(e*x+d)**(1/2)/(c*x**2+b*x+a)**(5/2),x)
[Out]
Timed out
_______________________________________________________________________________________
Mathematica [C] time = 12.6447, size = 2000, normalized size = 3.87 \[ \text{result too large to display} \]
Antiderivative was successfully verified.
[In] Integrate[((b + 2*c*x)*Sqrt[d + e*x])/(a + b*x + c*x^2)^(5/2),x]
[Out]
(Sqrt[d + e*x]*(a + b*x + c*x^2)^3*(-2/(3*(a + b*x + c*x^2)^2) + (2*(b*c*d*e - b
^2*e^2 + 2*a*c*e^2 + 2*c^2*d*e*x - b*c*e^2*x))/(3*(-(b^2*c*d^2) + 4*a*c^2*d^2 +
b^3*d*e - 4*a*b*c*d*e - a*b^2*e^2 + 4*a^2*c*e^2)*(a + b*x + c*x^2))))/(a + x*(b
+ c*x))^(5/2) + (2*c*(a + b*x + c*x^2)^(5/2)*(((2*c*d - b*e)*(d + e*x)^(3/2)*(c
+ (c*d^2)/(d + e*x)^2 - (b*d*e)/(d + e*x)^2 + (a*e^2)/(d + e*x)^2 - (2*c*d)/(d +
e*x) + (b*e)/(d + e*x)))/(c*Sqrt[((d + e*x)^2*(c*(-1 + d/(d + e*x))^2 + (e*(b -
(b*d)/(d + e*x) + (a*e)/(d + e*x)))/(d + e*x)))/e^2]) - ((c*d^2 - b*d*e + a*e^2
)*(d + e*x)*Sqrt[c + (c*d^2)/(d + e*x)^2 - (b*d*e)/(d + e*x)^2 + (a*e^2)/(d + e*
x)^2 - (2*c*d)/(d + e*x) + (b*e)/(d + e*x)]*((I*c*d*(2*c*d - b*e + Sqrt[b^2*e^2
- 4*a*c*e^2])*Sqrt[1 - (2*(c*d^2 - b*d*e + a*e^2))/((2*c*d - b*e - Sqrt[b^2*e^2
- 4*a*c*e^2])*(d + e*x))]*Sqrt[1 - (2*(c*d^2 - b*d*e + a*e^2))/((2*c*d - b*e + S
qrt[b^2*e^2 - 4*a*c*e^2])*(d + e*x))]*(EllipticE[I*ArcSinh[(Sqrt[2]*Sqrt[-((c*d^
2 - b*d*e + a*e^2)/(2*c*d - b*e - Sqrt[b^2*e^2 - 4*a*c*e^2]))])/Sqrt[d + e*x]],
(2*c*d - b*e - Sqrt[b^2*e^2 - 4*a*c*e^2])/(2*c*d - b*e + Sqrt[b^2*e^2 - 4*a*c*e^
2])] - EllipticF[I*ArcSinh[(Sqrt[2]*Sqrt[-((c*d^2 - b*d*e + a*e^2)/(2*c*d - b*e
- Sqrt[b^2*e^2 - 4*a*c*e^2]))])/Sqrt[d + e*x]], (2*c*d - b*e - Sqrt[b^2*e^2 - 4*
a*c*e^2])/(2*c*d - b*e + Sqrt[b^2*e^2 - 4*a*c*e^2])]))/(Sqrt[2]*(c*d^2 - b*d*e +
a*e^2)*Sqrt[-((c*d^2 - b*d*e + a*e^2)/(2*c*d - b*e - Sqrt[b^2*e^2 - 4*a*c*e^2])
)]*Sqrt[c + (c*d^2 - b*d*e + a*e^2)/(d + e*x)^2 + (-2*c*d + b*e)/(d + e*x)]) - (
(I/2)*b*e*(2*c*d - b*e + Sqrt[b^2*e^2 - 4*a*c*e^2])*Sqrt[1 - (2*(c*d^2 - b*d*e +
a*e^2))/((2*c*d - b*e - Sqrt[b^2*e^2 - 4*a*c*e^2])*(d + e*x))]*Sqrt[1 - (2*(c*d
^2 - b*d*e + a*e^2))/((2*c*d - b*e + Sqrt[b^2*e^2 - 4*a*c*e^2])*(d + e*x))]*(Ell
ipticE[I*ArcSinh[(Sqrt[2]*Sqrt[-((c*d^2 - b*d*e + a*e^2)/(2*c*d - b*e - Sqrt[b^2
*e^2 - 4*a*c*e^2]))])/Sqrt[d + e*x]], (2*c*d - b*e - Sqrt[b^2*e^2 - 4*a*c*e^2])/
(2*c*d - b*e + Sqrt[b^2*e^2 - 4*a*c*e^2])] - EllipticF[I*ArcSinh[(Sqrt[2]*Sqrt[-
((c*d^2 - b*d*e + a*e^2)/(2*c*d - b*e - Sqrt[b^2*e^2 - 4*a*c*e^2]))])/Sqrt[d + e
*x]], (2*c*d - b*e - Sqrt[b^2*e^2 - 4*a*c*e^2])/(2*c*d - b*e + Sqrt[b^2*e^2 - 4*
a*c*e^2])]))/(Sqrt[2]*(c*d^2 - b*d*e + a*e^2)*Sqrt[-((c*d^2 - b*d*e + a*e^2)/(2*
c*d - b*e - Sqrt[b^2*e^2 - 4*a*c*e^2]))]*Sqrt[c + (c*d^2 - b*d*e + a*e^2)/(d + e
*x)^2 + (-2*c*d + b*e)/(d + e*x)]) + (I*Sqrt[2]*c*Sqrt[1 - (2*(c*d^2 - b*d*e + a
*e^2))/((2*c*d - b*e - Sqrt[b^2*e^2 - 4*a*c*e^2])*(d + e*x))]*Sqrt[1 - (2*(c*d^2
- b*d*e + a*e^2))/((2*c*d - b*e + Sqrt[b^2*e^2 - 4*a*c*e^2])*(d + e*x))]*Ellipt
icF[I*ArcSinh[(Sqrt[2]*Sqrt[-((c*d^2 - b*d*e + a*e^2)/(2*c*d - b*e - Sqrt[b^2*e^
2 - 4*a*c*e^2]))])/Sqrt[d + e*x]], (2*c*d - b*e - Sqrt[b^2*e^2 - 4*a*c*e^2])/(2*
c*d - b*e + Sqrt[b^2*e^2 - 4*a*c*e^2])])/(Sqrt[-((c*d^2 - b*d*e + a*e^2)/(2*c*d
- b*e - Sqrt[b^2*e^2 - 4*a*c*e^2]))]*Sqrt[c + (c*d^2 - b*d*e + a*e^2)/(d + e*x)^
2 + (-2*c*d + b*e)/(d + e*x)])))/(c*Sqrt[((d + e*x)^2*(c*(-1 + d/(d + e*x))^2 +
(e*(b - (b*d)/(d + e*x) + (a*e)/(d + e*x)))/(d + e*x)))/e^2])))/(3*(b^2 - 4*a*c)
*(c*d^2 - b*d*e + a*e^2)*(a + x*(b + c*x))^(5/2))
_______________________________________________________________________________________
Maple [B] time = 0.103, size = 5571, normalized size = 10.8 \[ \text{output too large to display} \]
Verification of antiderivative is not currently implemented for this CAS.
[In] int((2*c*x+b)*(e*x+d)^(1/2)/(c*x^2+b*x+a)^(5/2),x)
[Out]
result too large to display
_______________________________________________________________________________________
Maxima [F] time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (2 \, c x + b\right )} \sqrt{e x + d}}{{\left (c x^{2} + b x + a\right )}^{\frac{5}{2}}}\,{d x} \]
Verification of antiderivative is not currently implemented for this CAS.
[In] integrate((2*c*x + b)*sqrt(e*x + d)/(c*x^2 + b*x + a)^(5/2),x, algorithm="maxima")
[Out]
integrate((2*c*x + b)*sqrt(e*x + d)/(c*x^2 + b*x + a)^(5/2), x)
_______________________________________________________________________________________
Fricas [F] time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (2 \, c x + b\right )} \sqrt{e x + d}}{{\left (c^{2} x^{4} + 2 \, b c x^{3} + 2 \, a b x +{\left (b^{2} + 2 \, a c\right )} x^{2} + a^{2}\right )} \sqrt{c x^{2} + b x + a}}, x\right ) \]
Verification of antiderivative is not currently implemented for this CAS.
[In] integrate((2*c*x + b)*sqrt(e*x + d)/(c*x^2 + b*x + a)^(5/2),x, algorithm="fricas")
[Out]
integral((2*c*x + b)*sqrt(e*x + d)/((c^2*x^4 + 2*b*c*x^3 + 2*a*b*x + (b^2 + 2*a*
c)*x^2 + a^2)*sqrt(c*x^2 + b*x + a)), x)
_______________________________________________________________________________________
Sympy [F(-1)] time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]
Verification of antiderivative is not currently implemented for this CAS.
[In] integrate((2*c*x+b)*(e*x+d)**(1/2)/(c*x**2+b*x+a)**(5/2),x)
[Out]
Timed out
_______________________________________________________________________________________
GIAC/XCAS [F(-1)] time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]
Verification of antiderivative is not currently implemented for this CAS.
[In] integrate((2*c*x + b)*sqrt(e*x + d)/(c*x^2 + b*x + a)^(5/2),x, algorithm="giac")
[Out]
Timed out