3.124 \(\int x \text{Chi}(a+b x) \sinh (a+b x) \, dx\)

Optimal. Leaf size=109 \[ \frac{a \text{Chi}(2 a+2 b x)}{2 b^2}-\frac{\text{Chi}(a+b x) \sinh (a+b x)}{b^2}+\frac{\text{Shi}(2 a+2 b x)}{2 b^2}+\frac{a \log (a+b x)}{2 b^2}-\frac{\sinh (a+b x) \cosh (a+b x)}{2 b^2}+\frac{x \text{Chi}(a+b x) \cosh (a+b x)}{b}-\frac{x}{2 b} \]

[Out]

-x/(2*b) + (x*Cosh[a + b*x]*CoshIntegral[a + b*x])/b + (a*CoshIntegral[2*a + 2*b*x])/(2*b^2) + (a*Log[a + b*x]
)/(2*b^2) - (Cosh[a + b*x]*Sinh[a + b*x])/(2*b^2) - (CoshIntegral[a + b*x]*Sinh[a + b*x])/b^2 + SinhIntegral[2
*a + 2*b*x]/(2*b^2)

________________________________________________________________________________________

Rubi [A]  time = 0.224368, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 10, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.714, Rules used = {6549, 6742, 2635, 8, 3312, 3301, 6541, 5448, 12, 3298} \[ \frac{a \text{Chi}(2 a+2 b x)}{2 b^2}-\frac{\text{Chi}(a+b x) \sinh (a+b x)}{b^2}+\frac{\text{Shi}(2 a+2 b x)}{2 b^2}+\frac{a \log (a+b x)}{2 b^2}-\frac{\sinh (a+b x) \cosh (a+b x)}{2 b^2}+\frac{x \text{Chi}(a+b x) \cosh (a+b x)}{b}-\frac{x}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[x*CoshIntegral[a + b*x]*Sinh[a + b*x],x]

[Out]

-x/(2*b) + (x*Cosh[a + b*x]*CoshIntegral[a + b*x])/b + (a*CoshIntegral[2*a + 2*b*x])/(2*b^2) + (a*Log[a + b*x]
)/(2*b^2) - (Cosh[a + b*x]*Sinh[a + b*x])/(2*b^2) - (CoshIntegral[a + b*x]*Sinh[a + b*x])/b^2 + SinhIntegral[2
*a + 2*b*x]/(2*b^2)

Rule 6549

Int[CoshIntegral[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[((
e + f*x)^m*Cosh[a + b*x]*CoshIntegral[c + d*x])/b, x] + (-Dist[d/b, Int[((e + f*x)^m*Cosh[a + b*x]*Cosh[c + d*
x])/(c + d*x), x], x] - Dist[(f*m)/b, Int[(e + f*x)^(m - 1)*Cosh[a + b*x]*CoshIntegral[c + d*x], x], x]) /; Fr
eeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 6541

Int[Cosh[(a_.) + (b_.)*(x_)]*CoshIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[(Sinh[a + b*x]*CoshIntegral[c
 + d*x])/b, x] - Dist[d/b, Int[(Sinh[a + b*x]*Cosh[c + d*x])/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int x \text{Chi}(a+b x) \sinh (a+b x) \, dx &=\frac{x \cosh (a+b x) \text{Chi}(a+b x)}{b}-\frac{\int \cosh (a+b x) \text{Chi}(a+b x) \, dx}{b}-\int \frac{x \cosh ^2(a+b x)}{a+b x} \, dx\\ &=\frac{x \cosh (a+b x) \text{Chi}(a+b x)}{b}-\frac{\text{Chi}(a+b x) \sinh (a+b x)}{b^2}+\frac{\int \frac{\cosh (a+b x) \sinh (a+b x)}{a+b x} \, dx}{b}-\int \left (\frac{\cosh ^2(a+b x)}{b}-\frac{a \cosh ^2(a+b x)}{b (a+b x)}\right ) \, dx\\ &=\frac{x \cosh (a+b x) \text{Chi}(a+b x)}{b}-\frac{\text{Chi}(a+b x) \sinh (a+b x)}{b^2}-\frac{\int \cosh ^2(a+b x) \, dx}{b}+\frac{\int \frac{\sinh (2 a+2 b x)}{2 (a+b x)} \, dx}{b}+\frac{a \int \frac{\cosh ^2(a+b x)}{a+b x} \, dx}{b}\\ &=\frac{x \cosh (a+b x) \text{Chi}(a+b x)}{b}-\frac{\cosh (a+b x) \sinh (a+b x)}{2 b^2}-\frac{\text{Chi}(a+b x) \sinh (a+b x)}{b^2}-\frac{\int 1 \, dx}{2 b}+\frac{\int \frac{\sinh (2 a+2 b x)}{a+b x} \, dx}{2 b}+\frac{a \int \left (\frac{1}{2 (a+b x)}+\frac{\cosh (2 a+2 b x)}{2 (a+b x)}\right ) \, dx}{b}\\ &=-\frac{x}{2 b}+\frac{x \cosh (a+b x) \text{Chi}(a+b x)}{b}+\frac{a \log (a+b x)}{2 b^2}-\frac{\cosh (a+b x) \sinh (a+b x)}{2 b^2}-\frac{\text{Chi}(a+b x) \sinh (a+b x)}{b^2}+\frac{\text{Shi}(2 a+2 b x)}{2 b^2}+\frac{a \int \frac{\cosh (2 a+2 b x)}{a+b x} \, dx}{2 b}\\ &=-\frac{x}{2 b}+\frac{x \cosh (a+b x) \text{Chi}(a+b x)}{b}+\frac{a \text{Chi}(2 a+2 b x)}{2 b^2}+\frac{a \log (a+b x)}{2 b^2}-\frac{\cosh (a+b x) \sinh (a+b x)}{2 b^2}-\frac{\text{Chi}(a+b x) \sinh (a+b x)}{b^2}+\frac{\text{Shi}(2 a+2 b x)}{2 b^2}\\ \end{align*}

Mathematica [A]  time = 0.184971, size = 78, normalized size = 0.72 \[ \frac{2 a \text{Chi}(2 (a+b x))+4 \text{Chi}(a+b x) (b x \cosh (a+b x)-\sinh (a+b x))+2 \text{Shi}(2 (a+b x))+2 a \log (a+b x)-\sinh (2 (a+b x))-2 b x}{4 b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x*CoshIntegral[a + b*x]*Sinh[a + b*x],x]

[Out]

(-2*b*x + 2*a*CoshIntegral[2*(a + b*x)] + 2*a*Log[a + b*x] + 4*CoshIntegral[a + b*x]*(b*x*Cosh[a + b*x] - Sinh
[a + b*x]) - Sinh[2*(a + b*x)] + 2*SinhIntegral[2*(a + b*x)])/(4*b^2)

________________________________________________________________________________________

Maple [A]  time = 0.062, size = 106, normalized size = 1. \begin{align*}{\frac{x{\it Chi} \left ( bx+a \right ) \cosh \left ( bx+a \right ) }{b}}-{\frac{{\it Chi} \left ( bx+a \right ) \sinh \left ( bx+a \right ) }{{b}^{2}}}-{\frac{\cosh \left ( bx+a \right ) \sinh \left ( bx+a \right ) }{2\,{b}^{2}}}-{\frac{x}{2\,b}}-{\frac{a}{2\,{b}^{2}}}+{\frac{{\it Shi} \left ( 2\,bx+2\,a \right ) }{2\,{b}^{2}}}+{\frac{a\ln \left ( bx+a \right ) }{2\,{b}^{2}}}+{\frac{a{\it Chi} \left ( 2\,bx+2\,a \right ) }{2\,{b}^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*Chi(b*x+a)*sinh(b*x+a),x)

[Out]

x*Chi(b*x+a)*cosh(b*x+a)/b-Chi(b*x+a)*sinh(b*x+a)/b^2-1/2*cosh(b*x+a)*sinh(b*x+a)/b^2-1/2*x/b-1/2/b^2*a+1/2*Sh
i(2*b*x+2*a)/b^2+1/2*a*ln(b*x+a)/b^2+1/2*a*Chi(2*b*x+2*a)/b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x{\rm Chi}\left (b x + a\right ) \sinh \left (b x + a\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*Chi(b*x+a)*sinh(b*x+a),x, algorithm="maxima")

[Out]

integrate(x*Chi(b*x + a)*sinh(b*x + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (x \operatorname{Chi}\left (b x + a\right ) \sinh \left (b x + a\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*Chi(b*x+a)*sinh(b*x+a),x, algorithm="fricas")

[Out]

integral(x*cosh_integral(b*x + a)*sinh(b*x + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \sinh{\left (a + b x \right )} \operatorname{Chi}\left (a + b x\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*Chi(b*x+a)*sinh(b*x+a),x)

[Out]

Integral(x*sinh(a + b*x)*Chi(a + b*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x{\rm Chi}\left (b x + a\right ) \sinh \left (b x + a\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*Chi(b*x+a)*sinh(b*x+a),x, algorithm="giac")

[Out]

integrate(x*Chi(b*x + a)*sinh(b*x + a), x)