3.88 \(\int x \text{CosIntegral}(a+b x) \, dx\)

Optimal. Leaf size=71 \[ -\frac{a^2 \text{CosIntegral}(a+b x)}{2 b^2}+\frac{a \sin (a+b x)}{2 b^2}-\frac{\cos (a+b x)}{2 b^2}+\frac{1}{2} x^2 \text{CosIntegral}(a+b x)-\frac{x \sin (a+b x)}{2 b} \]

[Out]

-Cos[a + b*x]/(2*b^2) - (a^2*CosIntegral[a + b*x])/(2*b^2) + (x^2*CosIntegral[a + b*x])/2 + (a*Sin[a + b*x])/(
2*b^2) - (x*Sin[a + b*x])/(2*b)

________________________________________________________________________________________

Rubi [A]  time = 0.20677, antiderivative size = 71, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 8, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.75, Rules used = {6504, 6742, 2637, 3296, 2638, 3302} \[ -\frac{a^2 \text{CosIntegral}(a+b x)}{2 b^2}+\frac{a \sin (a+b x)}{2 b^2}-\frac{\cos (a+b x)}{2 b^2}+\frac{1}{2} x^2 \text{CosIntegral}(a+b x)-\frac{x \sin (a+b x)}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[x*CosIntegral[a + b*x],x]

[Out]

-Cos[a + b*x]/(2*b^2) - (a^2*CosIntegral[a + b*x])/(2*b^2) + (x^2*CosIntegral[a + b*x])/2 + (a*Sin[a + b*x])/(
2*b^2) - (x*Sin[a + b*x])/(2*b)

Rule 6504

Int[CosIntegral[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m + 1)*CosIntegr
al[a + b*x])/(d*(m + 1)), x] - Dist[b/(d*(m + 1)), Int[((c + d*x)^(m + 1)*Cos[a + b*x])/(a + b*x), x], x] /; F
reeQ[{a, b, c, d, m}, x] && NeQ[m, -1]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rubi steps

\begin{align*} \int x \text{Ci}(a+b x) \, dx &=\frac{1}{2} x^2 \text{Ci}(a+b x)-\frac{1}{2} b \int \frac{x^2 \cos (a+b x)}{a+b x} \, dx\\ &=\frac{1}{2} x^2 \text{Ci}(a+b x)-\frac{1}{2} b \int \left (-\frac{a \cos (a+b x)}{b^2}+\frac{x \cos (a+b x)}{b}+\frac{a^2 \cos (a+b x)}{b^2 (a+b x)}\right ) \, dx\\ &=\frac{1}{2} x^2 \text{Ci}(a+b x)-\frac{1}{2} \int x \cos (a+b x) \, dx+\frac{a \int \cos (a+b x) \, dx}{2 b}-\frac{a^2 \int \frac{\cos (a+b x)}{a+b x} \, dx}{2 b}\\ &=-\frac{a^2 \text{Ci}(a+b x)}{2 b^2}+\frac{1}{2} x^2 \text{Ci}(a+b x)+\frac{a \sin (a+b x)}{2 b^2}-\frac{x \sin (a+b x)}{2 b}+\frac{\int \sin (a+b x) \, dx}{2 b}\\ &=-\frac{\cos (a+b x)}{2 b^2}-\frac{a^2 \text{Ci}(a+b x)}{2 b^2}+\frac{1}{2} x^2 \text{Ci}(a+b x)+\frac{a \sin (a+b x)}{2 b^2}-\frac{x \sin (a+b x)}{2 b}\\ \end{align*}

Mathematica [A]  time = 0.105331, size = 49, normalized size = 0.69 \[ \frac{\left (b^2 x^2-a^2\right ) \text{CosIntegral}(a+b x)+(a-b x) \sin (a+b x)-\cos (a+b x)}{2 b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x*CosIntegral[a + b*x],x]

[Out]

(-Cos[a + b*x] + (-a^2 + b^2*x^2)*CosIntegral[a + b*x] + (a - b*x)*Sin[a + b*x])/(2*b^2)

________________________________________________________________________________________

Maple [A]  time = 0.049, size = 60, normalized size = 0.9 \begin{align*}{\frac{1}{{b}^{2}} \left ({\it Ci} \left ( bx+a \right ) \left ({\frac{ \left ( bx+a \right ) ^{2}}{2}}-a \left ( bx+a \right ) \right ) -{\frac{\sin \left ( bx+a \right ) \left ( bx+a \right ) }{2}}-{\frac{\cos \left ( bx+a \right ) }{2}}+a\sin \left ( bx+a \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*Ci(b*x+a),x)

[Out]

1/b^2*(Ci(b*x+a)*(1/2*(b*x+a)^2-a*(b*x+a))-1/2*sin(b*x+a)*(b*x+a)-1/2*cos(b*x+a)+a*sin(b*x+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x{\rm Ci}\left (b x + a\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*Ci(b*x+a),x, algorithm="maxima")

[Out]

integrate(x*Ci(b*x + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (x \operatorname{Ci}\left (b x + a\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*Ci(b*x+a),x, algorithm="fricas")

[Out]

integral(x*cos_integral(b*x + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \operatorname{Ci}{\left (a + b x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*Ci(b*x+a),x)

[Out]

Integral(x*Ci(a + b*x), x)

________________________________________________________________________________________

Giac [A]  time = 1.14683, size = 108, normalized size = 1.52 \begin{align*} \frac{1}{2} \, x^{2} \operatorname{Ci}\left (b x + a\right ) - \frac{a^{2} \cos \left (a\right )^{2} \operatorname{Ci}\left (b x + a\right ) + a^{2} \cos \left (a\right )^{2} \operatorname{Ci}\left (-b x - a\right ) + a^{2} \operatorname{Ci}\left (b x + a\right ) \sin \left (a\right )^{2} + a^{2} \operatorname{Ci}\left (-b x - a\right ) \sin \left (a\right )^{2}}{4 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*Ci(b*x+a),x, algorithm="giac")

[Out]

1/2*x^2*cos_integral(b*x + a) - 1/4*(a^2*cos(a)^2*cos_integral(b*x + a) + a^2*cos(a)^2*cos_integral(-b*x - a)
+ a^2*cos_integral(b*x + a)*sin(a)^2 + a^2*cos_integral(-b*x - a)*sin(a)^2)/b^2