3.185 \(\int x^3 \cos (\frac{1}{2} b^2 \pi x^2) \text{FresnelC}(b x) \, dx\)

Optimal. Leaf size=104 \[ \frac{x^2 \text{FresnelC}(b x) \sin \left (\frac{1}{2} \pi b^2 x^2\right )}{\pi b^2}+\frac{2 \text{FresnelC}(b x) \cos \left (\frac{1}{2} \pi b^2 x^2\right )}{\pi ^2 b^4}-\frac{5 \text{FresnelC}\left (\sqrt{2} b x\right )}{4 \sqrt{2} \pi ^2 b^4}+\frac{x \cos \left (\pi b^2 x^2\right )}{4 \pi ^2 b^3}-\frac{x}{\pi ^2 b^3} \]

[Out]

-(x/(b^3*Pi^2)) + (x*Cos[b^2*Pi*x^2])/(4*b^3*Pi^2) + (2*Cos[(b^2*Pi*x^2)/2]*FresnelC[b*x])/(b^4*Pi^2) - (5*Fre
snelC[Sqrt[2]*b*x])/(4*Sqrt[2]*b^4*Pi^2) + (x^2*FresnelC[b*x]*Sin[(b^2*Pi*x^2)/2])/(b^2*Pi)

________________________________________________________________________________________

Rubi [A]  time = 0.0782079, antiderivative size = 104, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {6455, 6461, 3358, 3352, 3385} \[ \frac{x^2 \text{FresnelC}(b x) \sin \left (\frac{1}{2} \pi b^2 x^2\right )}{\pi b^2}+\frac{2 \text{FresnelC}(b x) \cos \left (\frac{1}{2} \pi b^2 x^2\right )}{\pi ^2 b^4}-\frac{5 \text{FresnelC}\left (\sqrt{2} b x\right )}{4 \sqrt{2} \pi ^2 b^4}+\frac{x \cos \left (\pi b^2 x^2\right )}{4 \pi ^2 b^3}-\frac{x}{\pi ^2 b^3} \]

Antiderivative was successfully verified.

[In]

Int[x^3*Cos[(b^2*Pi*x^2)/2]*FresnelC[b*x],x]

[Out]

-(x/(b^3*Pi^2)) + (x*Cos[b^2*Pi*x^2])/(4*b^3*Pi^2) + (2*Cos[(b^2*Pi*x^2)/2]*FresnelC[b*x])/(b^4*Pi^2) - (5*Fre
snelC[Sqrt[2]*b*x])/(4*Sqrt[2]*b^4*Pi^2) + (x^2*FresnelC[b*x]*Sin[(b^2*Pi*x^2)/2])/(b^2*Pi)

Rule 6455

Int[Cos[(d_.)*(x_)^2]*FresnelC[(b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[(x^(m - 1)*Sin[d*x^2]*FresnelC[b*x])/(
2*d), x] + (-Dist[(m - 1)/(2*d), Int[x^(m - 2)*Sin[d*x^2]*FresnelC[b*x], x], x] - Dist[b/(4*d), Int[x^(m - 1)*
Sin[2*d*x^2], x], x]) /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2*b^4)/4] && IGtQ[m, 1]

Rule 6461

Int[FresnelC[(b_.)*(x_)]*(x_)*Sin[(d_.)*(x_)^2], x_Symbol] :> -Simp[(Cos[d*x^2]*FresnelC[b*x])/(2*d), x] + Dis
t[b/(2*d), Int[Cos[d*x^2]^2, x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2*b^4)/4]

Rule 3358

Int[((a_.) + Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)]*(b_.))^(p_), x_Symbol] :> Int[ExpandTrigReduce[(a +
b*Cos[c + d*(e + f*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 1] && IGtQ[n, 1]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3385

Int[((e_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> -Simp[(e^(n - 1)*(e*x)^(m - n + 1)*Cos[c + d
*x^n])/(d*n), x] + Dist[(e^n*(m - n + 1))/(d*n), Int[(e*x)^(m - n)*Cos[c + d*x^n], x], x] /; FreeQ[{c, d, e},
x] && IGtQ[n, 0] && LtQ[n, m + 1]

Rubi steps

\begin{align*} \int x^3 \cos \left (\frac{1}{2} b^2 \pi x^2\right ) C(b x) \, dx &=\frac{x^2 C(b x) \sin \left (\frac{1}{2} b^2 \pi x^2\right )}{b^2 \pi }-\frac{2 \int x C(b x) \sin \left (\frac{1}{2} b^2 \pi x^2\right ) \, dx}{b^2 \pi }-\frac{\int x^2 \sin \left (b^2 \pi x^2\right ) \, dx}{2 b \pi }\\ &=\frac{x \cos \left (b^2 \pi x^2\right )}{4 b^3 \pi ^2}+\frac{2 \cos \left (\frac{1}{2} b^2 \pi x^2\right ) C(b x)}{b^4 \pi ^2}+\frac{x^2 C(b x) \sin \left (\frac{1}{2} b^2 \pi x^2\right )}{b^2 \pi }-\frac{\int \cos \left (b^2 \pi x^2\right ) \, dx}{4 b^3 \pi ^2}-\frac{2 \int \cos ^2\left (\frac{1}{2} b^2 \pi x^2\right ) \, dx}{b^3 \pi ^2}\\ &=\frac{x \cos \left (b^2 \pi x^2\right )}{4 b^3 \pi ^2}+\frac{2 \cos \left (\frac{1}{2} b^2 \pi x^2\right ) C(b x)}{b^4 \pi ^2}-\frac{C\left (\sqrt{2} b x\right )}{4 \sqrt{2} b^4 \pi ^2}+\frac{x^2 C(b x) \sin \left (\frac{1}{2} b^2 \pi x^2\right )}{b^2 \pi }-\frac{2 \int \left (\frac{1}{2}+\frac{1}{2} \cos \left (b^2 \pi x^2\right )\right ) \, dx}{b^3 \pi ^2}\\ &=-\frac{x}{b^3 \pi ^2}+\frac{x \cos \left (b^2 \pi x^2\right )}{4 b^3 \pi ^2}+\frac{2 \cos \left (\frac{1}{2} b^2 \pi x^2\right ) C(b x)}{b^4 \pi ^2}-\frac{C\left (\sqrt{2} b x\right )}{4 \sqrt{2} b^4 \pi ^2}+\frac{x^2 C(b x) \sin \left (\frac{1}{2} b^2 \pi x^2\right )}{b^2 \pi }-\frac{\int \cos \left (b^2 \pi x^2\right ) \, dx}{b^3 \pi ^2}\\ &=-\frac{x}{b^3 \pi ^2}+\frac{x \cos \left (b^2 \pi x^2\right )}{4 b^3 \pi ^2}+\frac{2 \cos \left (\frac{1}{2} b^2 \pi x^2\right ) C(b x)}{b^4 \pi ^2}-\frac{5 C\left (\sqrt{2} b x\right )}{4 \sqrt{2} b^4 \pi ^2}+\frac{x^2 C(b x) \sin \left (\frac{1}{2} b^2 \pi x^2\right )}{b^2 \pi }\\ \end{align*}

Mathematica [A]  time = 0.084731, size = 83, normalized size = 0.8 \[ \frac{8 \text{FresnelC}(b x) \left (\pi b^2 x^2 \sin \left (\frac{1}{2} \pi b^2 x^2\right )+2 \cos \left (\frac{1}{2} \pi b^2 x^2\right )\right )+2 b x \left (\cos \left (\pi b^2 x^2\right )-4\right )-5 \sqrt{2} \text{FresnelC}\left (\sqrt{2} b x\right )}{8 \pi ^2 b^4} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*Cos[(b^2*Pi*x^2)/2]*FresnelC[b*x],x]

[Out]

(2*b*x*(-4 + Cos[b^2*Pi*x^2]) - 5*Sqrt[2]*FresnelC[Sqrt[2]*b*x] + 8*FresnelC[b*x]*(2*Cos[(b^2*Pi*x^2)/2] + b^2
*Pi*x^2*Sin[(b^2*Pi*x^2)/2]))/(8*b^4*Pi^2)

________________________________________________________________________________________

Maple [A]  time = 0.076, size = 114, normalized size = 1.1 \begin{align*}{\frac{1}{b} \left ({\frac{{\it FresnelC} \left ( bx \right ) }{{b}^{3}} \left ({\frac{{b}^{2}{x}^{2}}{\pi }\sin \left ({\frac{{b}^{2}\pi \,{x}^{2}}{2}} \right ) }+2\,{\frac{\cos \left ( 1/2\,{b}^{2}\pi \,{x}^{2} \right ) }{{\pi }^{2}}} \right ) }-{\frac{1}{{b}^{3}} \left ({\frac{bx}{{\pi }^{2}}}+{\frac{\sqrt{2}{\it FresnelC} \left ( bx\sqrt{2} \right ) }{2\,{\pi }^{2}}}+{\frac{1}{2\,\pi } \left ( -{\frac{bx\cos \left ({b}^{2}\pi \,{x}^{2} \right ) }{2\,\pi }}+{\frac{\sqrt{2}{\it FresnelC} \left ( bx\sqrt{2} \right ) }{4\,\pi }} \right ) } \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*cos(1/2*b^2*Pi*x^2)*FresnelC(b*x),x)

[Out]

(FresnelC(b*x)/b^3*(1/Pi*b^2*x^2*sin(1/2*b^2*Pi*x^2)+2/Pi^2*cos(1/2*b^2*Pi*x^2))-1/b^3*(1/Pi^2*b*x+1/2/Pi^2*2^
(1/2)*FresnelC(b*x*2^(1/2))+1/2/Pi*(-1/2/Pi*b*x*cos(b^2*Pi*x^2)+1/4/Pi*2^(1/2)*FresnelC(b*x*2^(1/2)))))/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \cos \left (\frac{1}{2} \, \pi b^{2} x^{2}\right ){\rm fresnelc}\left (b x\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*cos(1/2*b^2*pi*x^2)*fresnelc(b*x),x, algorithm="maxima")

[Out]

integrate(x^3*cos(1/2*pi*b^2*x^2)*fresnelc(b*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (x^{3} \cos \left (\frac{1}{2} \, \pi b^{2} x^{2}\right ){\rm fresnelc}\left (b x\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*cos(1/2*b^2*pi*x^2)*fresnelc(b*x),x, algorithm="fricas")

[Out]

integral(x^3*cos(1/2*pi*b^2*x^2)*fresnelc(b*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \cos{\left (\frac{\pi b^{2} x^{2}}{2} \right )} C\left (b x\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*cos(1/2*b**2*pi*x**2)*fresnelc(b*x),x)

[Out]

Integral(x**3*cos(pi*b**2*x**2/2)*fresnelc(b*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \cos \left (\frac{1}{2} \, \pi b^{2} x^{2}\right ){\rm fresnelc}\left (b x\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*cos(1/2*b^2*pi*x^2)*fresnelc(b*x),x, algorithm="giac")

[Out]

integrate(x^3*cos(1/2*pi*b^2*x^2)*fresnelc(b*x), x)