3.208 \(\int x^3 \text{Erfi}(b x) \, dx\)

Optimal. Leaf size=69 \[ -\frac{3 \text{Erfi}(b x)}{16 b^4}-\frac{x^3 e^{b^2 x^2}}{4 \sqrt{\pi } b}+\frac{3 x e^{b^2 x^2}}{8 \sqrt{\pi } b^3}+\frac{1}{4} x^4 \text{Erfi}(b x) \]

[Out]

(3*E^(b^2*x^2)*x)/(8*b^3*Sqrt[Pi]) - (E^(b^2*x^2)*x^3)/(4*b*Sqrt[Pi]) - (3*Erfi[b*x])/(16*b^4) + (x^4*Erfi[b*x
])/4

________________________________________________________________________________________

Rubi [A]  time = 0.0578031, antiderivative size = 69, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 8, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.375, Rules used = {6363, 2212, 2204} \[ -\frac{3 \text{Erfi}(b x)}{16 b^4}-\frac{x^3 e^{b^2 x^2}}{4 \sqrt{\pi } b}+\frac{3 x e^{b^2 x^2}}{8 \sqrt{\pi } b^3}+\frac{1}{4} x^4 \text{Erfi}(b x) \]

Antiderivative was successfully verified.

[In]

Int[x^3*Erfi[b*x],x]

[Out]

(3*E^(b^2*x^2)*x)/(8*b^3*Sqrt[Pi]) - (E^(b^2*x^2)*x^3)/(4*b*Sqrt[Pi]) - (3*Erfi[b*x])/(16*b^4) + (x^4*Erfi[b*x
])/4

Rule 6363

Int[Erfi[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m + 1)*Erfi[a + b*x])/(
d*(m + 1)), x] - Dist[(2*b)/(Sqrt[Pi]*d*(m + 1)), Int[(c + d*x)^(m + 1)*E^(a + b*x)^2, x], x] /; FreeQ[{a, b,
c, d, m}, x] && NeQ[m, -1]

Rule 2212

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m
 - n + 1)*F^(a + b*(c + d*x)^n))/(b*d*n*Log[F]), x] - Dist[(m - n + 1)/(b*n*Log[F]), Int[(c + d*x)^(m - n)*F^(
a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[(2*(m + 1))/n] && LtQ[0, (m + 1)/n, 5] &&
IntegerQ[n] && (LtQ[0, n, m + 1] || LtQ[m, n, 0])

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rubi steps

\begin{align*} \int x^3 \text{erfi}(b x) \, dx &=\frac{1}{4} x^4 \text{erfi}(b x)-\frac{b \int e^{b^2 x^2} x^4 \, dx}{2 \sqrt{\pi }}\\ &=-\frac{e^{b^2 x^2} x^3}{4 b \sqrt{\pi }}+\frac{1}{4} x^4 \text{erfi}(b x)+\frac{3 \int e^{b^2 x^2} x^2 \, dx}{4 b \sqrt{\pi }}\\ &=\frac{3 e^{b^2 x^2} x}{8 b^3 \sqrt{\pi }}-\frac{e^{b^2 x^2} x^3}{4 b \sqrt{\pi }}+\frac{1}{4} x^4 \text{erfi}(b x)-\frac{3 \int e^{b^2 x^2} \, dx}{8 b^3 \sqrt{\pi }}\\ &=\frac{3 e^{b^2 x^2} x}{8 b^3 \sqrt{\pi }}-\frac{e^{b^2 x^2} x^3}{4 b \sqrt{\pi }}-\frac{3 \text{erfi}(b x)}{16 b^4}+\frac{1}{4} x^4 \text{erfi}(b x)\\ \end{align*}

Mathematica [A]  time = 0.0280703, size = 51, normalized size = 0.74 \[ \frac{\left (4 b^4 x^4-3\right ) \text{Erfi}(b x)-\frac{2 b x e^{b^2 x^2} \left (2 b^2 x^2-3\right )}{\sqrt{\pi }}}{16 b^4} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*Erfi[b*x],x]

[Out]

((-2*b*E^(b^2*x^2)*x*(-3 + 2*b^2*x^2))/Sqrt[Pi] + (-3 + 4*b^4*x^4)*Erfi[b*x])/(16*b^4)

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 61, normalized size = 0.9 \begin{align*}{\frac{1}{{b}^{4}} \left ({\frac{{b}^{4}{x}^{4}{\it erfi} \left ( bx \right ) }{4}}-{\frac{1}{2\,\sqrt{\pi }} \left ({\frac{{{\rm e}^{{b}^{2}{x}^{2}}}{b}^{3}{x}^{3}}{2}}-{\frac{3\,{{\rm e}^{{b}^{2}{x}^{2}}}bx}{4}}+{\frac{3\,\sqrt{\pi }{\it erfi} \left ( bx \right ) }{8}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*erfi(b*x),x)

[Out]

1/b^4*(1/4*b^4*x^4*erfi(b*x)-1/2/Pi^(1/2)*(1/2*exp(b^2*x^2)*b^3*x^3-3/4*exp(b^2*x^2)*b*x+3/8*Pi^(1/2)*erfi(b*x
)))

________________________________________________________________________________________

Maxima [C]  time = 0.983883, size = 74, normalized size = 1.07 \begin{align*} \frac{1}{4} \, x^{4} \operatorname{erfi}\left (b x\right ) - \frac{b{\left (\frac{2 \,{\left (2 \, b^{2} x^{3} - 3 \, x\right )} e^{\left (b^{2} x^{2}\right )}}{b^{4}} - \frac{3 i \, \sqrt{\pi } \operatorname{erf}\left (i \, b x\right )}{b^{5}}\right )}}{16 \, \sqrt{\pi }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*erfi(b*x),x, algorithm="maxima")

[Out]

1/4*x^4*erfi(b*x) - 1/16*b*(2*(2*b^2*x^3 - 3*x)*e^(b^2*x^2)/b^4 - 3*I*sqrt(pi)*erf(I*b*x)/b^5)/sqrt(pi)

________________________________________________________________________________________

Fricas [A]  time = 2.12278, size = 128, normalized size = 1.86 \begin{align*} -\frac{2 \, \sqrt{\pi }{\left (2 \, b^{3} x^{3} - 3 \, b x\right )} e^{\left (b^{2} x^{2}\right )} +{\left (3 \, \pi - 4 \, \pi b^{4} x^{4}\right )} \operatorname{erfi}\left (b x\right )}{16 \, \pi b^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*erfi(b*x),x, algorithm="fricas")

[Out]

-1/16*(2*sqrt(pi)*(2*b^3*x^3 - 3*b*x)*e^(b^2*x^2) + (3*pi - 4*pi*b^4*x^4)*erfi(b*x))/(pi*b^4)

________________________________________________________________________________________

Sympy [A]  time = 1.01405, size = 65, normalized size = 0.94 \begin{align*} \begin{cases} \frac{x^{4} \operatorname{erfi}{\left (b x \right )}}{4} - \frac{x^{3} e^{b^{2} x^{2}}}{4 \sqrt{\pi } b} + \frac{3 x e^{b^{2} x^{2}}}{8 \sqrt{\pi } b^{3}} - \frac{3 \operatorname{erfi}{\left (b x \right )}}{16 b^{4}} & \text{for}\: b \neq 0 \\0 & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*erfi(b*x),x)

[Out]

Piecewise((x**4*erfi(b*x)/4 - x**3*exp(b**2*x**2)/(4*sqrt(pi)*b) + 3*x*exp(b**2*x**2)/(8*sqrt(pi)*b**3) - 3*er
fi(b*x)/(16*b**4), Ne(b, 0)), (0, True))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \operatorname{erfi}\left (b x\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*erfi(b*x),x, algorithm="giac")

[Out]

integrate(x^3*erfi(b*x), x)