3.192 \(\int \frac{e^{c+d x^2} \text{Erfc}(a+b x)}{x^3} \, dx\)

Optimal. Leaf size=181 \[ \frac{2 a b^2 \text{Unintegrable}\left (\frac{e^{-a^2-2 a b x+x^2 \left (d-b^2\right )+c}}{x},x\right )}{\sqrt{\pi }}+d \text{Unintegrable}\left (\frac{e^{c+d x^2} \text{Erfc}(a+b x)}{x},x\right )+b \sqrt{b^2-d} e^{\frac{a^2 d}{b^2-d}+c} \text{Erf}\left (\frac{a b+x \left (b^2-d\right )}{\sqrt{b^2-d}}\right )+\frac{b e^{-a^2-2 a b x-x^2 \left (b^2-d\right )+c}}{\sqrt{\pi } x}-\frac{e^{c+d x^2} \text{Erfc}(a+b x)}{2 x^2} \]

[Out]

(b*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2))/(Sqrt[Pi]*x) + b*Sqrt[b^2 - d]*E^(c + (a^2*d)/(b^2 - d))*Erf[(a*b +
 (b^2 - d)*x)/Sqrt[b^2 - d]] - (E^(c + d*x^2)*Erfc[a + b*x])/(2*x^2) + (2*a*b^2*Unintegrable[E^(-a^2 + c - 2*a
*b*x + (-b^2 + d)*x^2)/x, x])/Sqrt[Pi] + d*Unintegrable[(E^(c + d*x^2)*Erfc[a + b*x])/x, x]

________________________________________________________________________________________

Rubi [A]  time = 0.411235, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int \frac{e^{c+d x^2} \text{Erfc}(a+b x)}{x^3} \, dx \]

Verification is Not applicable to the result.

[In]

Int[(E^(c + d*x^2)*Erfc[a + b*x])/x^3,x]

[Out]

(b*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2))/(Sqrt[Pi]*x) + b*Sqrt[b^2 - d]*E^(c + (a^2*d)/(b^2 - d))*Erf[(a*b +
 (b^2 - d)*x)/Sqrt[b^2 - d]] - (E^(c + d*x^2)*Erfc[a + b*x])/(2*x^2) + (2*a*b^2*Defer[Int][E^(-a^2 + c - 2*a*b
*x + (-b^2 + d)*x^2)/x, x])/Sqrt[Pi] + d*Defer[Int][(E^(c + d*x^2)*Erfc[a + b*x])/x, x]

Rubi steps

\begin{align*} \int \frac{e^{c+d x^2} \text{erfc}(a+b x)}{x^3} \, dx &=-\frac{e^{c+d x^2} \text{erfc}(a+b x)}{2 x^2}+d \int \frac{e^{c+d x^2} \text{erfc}(a+b x)}{x} \, dx-\frac{b \int \frac{e^{-a^2+c-2 a b x+\left (-b^2+d\right ) x^2}}{x^2} \, dx}{\sqrt{\pi }}\\ &=\frac{b e^{-a^2+c-2 a b x-\left (b^2-d\right ) x^2}}{\sqrt{\pi } x}-\frac{e^{c+d x^2} \text{erfc}(a+b x)}{2 x^2}+d \int \frac{e^{c+d x^2} \text{erfc}(a+b x)}{x} \, dx+\frac{\left (2 a b^2\right ) \int \frac{e^{-a^2+c-2 a b x+\left (-b^2+d\right ) x^2}}{x} \, dx}{\sqrt{\pi }}+\frac{\left (2 b \left (b^2-d\right )\right ) \int e^{-a^2+c-2 a b x+\left (-b^2+d\right ) x^2} \, dx}{\sqrt{\pi }}\\ &=\frac{b e^{-a^2+c-2 a b x-\left (b^2-d\right ) x^2}}{\sqrt{\pi } x}-\frac{e^{c+d x^2} \text{erfc}(a+b x)}{2 x^2}+d \int \frac{e^{c+d x^2} \text{erfc}(a+b x)}{x} \, dx+\frac{\left (2 a b^2\right ) \int \frac{e^{-a^2+c-2 a b x+\left (-b^2+d\right ) x^2}}{x} \, dx}{\sqrt{\pi }}+\frac{\left (2 b \left (b^2-d\right ) e^{\frac{b^2 c+a^2 d-c d}{b^2-d}}\right ) \int \exp \left (\frac{\left (-2 a b+2 \left (-b^2+d\right ) x\right )^2}{4 \left (-b^2+d\right )}\right ) \, dx}{\sqrt{\pi }}\\ &=\frac{b e^{-a^2+c-2 a b x-\left (b^2-d\right ) x^2}}{\sqrt{\pi } x}+b \sqrt{b^2-d} e^{\frac{b^2 c+a^2 d-c d}{b^2-d}} \text{erf}\left (\frac{a b+\left (b^2-d\right ) x}{\sqrt{b^2-d}}\right )-\frac{e^{c+d x^2} \text{erfc}(a+b x)}{2 x^2}+d \int \frac{e^{c+d x^2} \text{erfc}(a+b x)}{x} \, dx+\frac{\left (2 a b^2\right ) \int \frac{e^{-a^2+c-2 a b x+\left (-b^2+d\right ) x^2}}{x} \, dx}{\sqrt{\pi }}\\ \end{align*}

Mathematica [A]  time = 0.877985, size = 0, normalized size = 0. \[ \int \frac{e^{c+d x^2} \text{Erfc}(a+b x)}{x^3} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(E^(c + d*x^2)*Erfc[a + b*x])/x^3,x]

[Out]

Integrate[(E^(c + d*x^2)*Erfc[a + b*x])/x^3, x]

________________________________________________________________________________________

Maple [A]  time = 0.353, size = 0, normalized size = 0. \begin{align*} \int{\frac{{{\rm e}^{d{x}^{2}+c}}{\it erfc} \left ( bx+a \right ) }{{x}^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(d*x^2+c)*erfc(b*x+a)/x^3,x)

[Out]

int(exp(d*x^2+c)*erfc(b*x+a)/x^3,x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{erfc}\left (b x + a\right ) e^{\left (d x^{2} + c\right )}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x^2+c)*erfc(b*x+a)/x^3,x, algorithm="maxima")

[Out]

integrate(erfc(b*x + a)*e^(d*x^2 + c)/x^3, x)

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (\operatorname{erf}\left (b x + a\right ) - 1\right )} e^{\left (d x^{2} + c\right )}}{x^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x^2+c)*erfc(b*x+a)/x^3,x, algorithm="fricas")

[Out]

integral(-(erf(b*x + a) - 1)*e^(d*x^2 + c)/x^3, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x**2+c)*erfc(b*x+a)/x**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{erfc}\left (b x + a\right ) e^{\left (d x^{2} + c\right )}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x^2+c)*erfc(b*x+a)/x^3,x, algorithm="giac")

[Out]

integrate(erfc(b*x + a)*e^(d*x^2 + c)/x^3, x)