3.158 \(\int e^{c+d x^2} x \text{Erfc}(b x) \, dx\)

Optimal. Leaf size=57 \[ \frac{b e^c \text{Erf}\left (x \sqrt{b^2-d}\right )}{2 d \sqrt{b^2-d}}+\frac{\text{Erfc}(b x) e^{c+d x^2}}{2 d} \]

[Out]

(b*E^c*Erf[Sqrt[b^2 - d]*x])/(2*Sqrt[b^2 - d]*d) + (E^(c + d*x^2)*Erfc[b*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0392718, antiderivative size = 57, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {6383, 2205} \[ \frac{b e^c \text{Erf}\left (x \sqrt{b^2-d}\right )}{2 d \sqrt{b^2-d}}+\frac{\text{Erfc}(b x) e^{c+d x^2}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[E^(c + d*x^2)*x*Erfc[b*x],x]

[Out]

(b*E^c*Erf[Sqrt[b^2 - d]*x])/(2*Sqrt[b^2 - d]*d) + (E^(c + d*x^2)*Erfc[b*x])/(2*d)

Rule 6383

Int[E^((c_.) + (d_.)*(x_)^2)*Erfc[(a_.) + (b_.)*(x_)]*(x_), x_Symbol] :> Simp[(E^(c + d*x^2)*Erfc[a + b*x])/(2
*d), x] + Dist[b/(d*Sqrt[Pi]), Int[E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x], x] /; FreeQ[{a, b, c, d}, x]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int e^{c+d x^2} x \text{erfc}(b x) \, dx &=\frac{e^{c+d x^2} \text{erfc}(b x)}{2 d}+\frac{b \int e^{c-\left (b^2-d\right ) x^2} \, dx}{d \sqrt{\pi }}\\ &=\frac{b e^c \text{erf}\left (\sqrt{b^2-d} x\right )}{2 \sqrt{b^2-d} d}+\frac{e^{c+d x^2} \text{erfc}(b x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.0385994, size = 50, normalized size = 0.88 \[ \frac{e^c \left (\frac{b \text{Erfi}\left (x \sqrt{d-b^2}\right )}{\sqrt{d-b^2}}+e^{d x^2} \text{Erfc}(b x)\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(c + d*x^2)*x*Erfc[b*x],x]

[Out]

(E^c*(E^(d*x^2)*Erfc[b*x] + (b*Erfi[Sqrt[-b^2 + d]*x])/Sqrt[-b^2 + d]))/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.32, size = 92, normalized size = 1.6 \begin{align*}{\frac{1}{b} \left ({\frac{b}{2\,d}{{\rm e}^{{\frac{{b}^{2}d{x}^{2}+{b}^{2}c}{{b}^{2}}}}}}-{\frac{{\it Erf} \left ( bx \right ) b}{2\,d}{{\rm e}^{{\frac{{b}^{2}d{x}^{2}+{b}^{2}c}{{b}^{2}}}}}}+{\frac{b{{\rm e}^{c}}}{2\,d}{\it Erf} \left ( \sqrt{1-{\frac{d}{{b}^{2}}}}bx \right ){\frac{1}{\sqrt{1-{\frac{d}{{b}^{2}}}}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(d*x^2+c)*x*erfc(b*x),x)

[Out]

(1/2*b*exp((b^2*d*x^2+b^2*c)/b^2)/d-1/2*erf(b*x)*b*exp((b^2*d*x^2+b^2*c)/b^2)/d+1/2*b/d*exp(c)/(1-d/b^2)^(1/2)
*erf((1-d/b^2)^(1/2)*b*x))/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \operatorname{erfc}\left (b x\right ) e^{\left (d x^{2} + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x^2+c)*x*erfc(b*x),x, algorithm="maxima")

[Out]

integrate(x*erfc(b*x)*e^(d*x^2 + c), x)

________________________________________________________________________________________

Fricas [A]  time = 2.07589, size = 147, normalized size = 2.58 \begin{align*} \frac{\sqrt{b^{2} - d} b \operatorname{erf}\left (\sqrt{b^{2} - d} x\right ) e^{c} +{\left (b^{2} -{\left (b^{2} - d\right )} \operatorname{erf}\left (b x\right ) - d\right )} e^{\left (d x^{2} + c\right )}}{2 \,{\left (b^{2} d - d^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x^2+c)*x*erfc(b*x),x, algorithm="fricas")

[Out]

1/2*(sqrt(b^2 - d)*b*erf(sqrt(b^2 - d)*x)*e^c + (b^2 - (b^2 - d)*erf(b*x) - d)*e^(d*x^2 + c))/(b^2*d - d^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} e^{c} \int x e^{d x^{2}} \operatorname{erfc}{\left (b x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x**2+c)*x*erfc(b*x),x)

[Out]

exp(c)*Integral(x*exp(d*x**2)*erfc(b*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \operatorname{erfc}\left (b x\right ) e^{\left (d x^{2} + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x^2+c)*x*erfc(b*x),x, algorithm="giac")

[Out]

integrate(x*erfc(b*x)*e^(d*x^2 + c), x)