3.148 \(\int \frac{\text{Erfc}(d (a+b \log (c x^n)))}{x^3} \, dx\)

Optimal. Leaf size=95 \[ -\frac{\left (c x^n\right )^{2/n} e^{\frac{2 a b d^2 n+1}{b^2 d^2 n^2}} \text{Erf}\left (\frac{a b d^2 n+b^2 d^2 n \log \left (c x^n\right )+1}{b d n}\right )}{2 x^2}-\frac{\text{Erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{2 x^2} \]

[Out]

-(E^((1 + 2*a*b*d^2*n)/(b^2*d^2*n^2))*(c*x^n)^(2/n)*Erf[(1 + a*b*d^2*n + b^2*d^2*n*Log[c*x^n])/(b*d*n)])/(2*x^
2) - Erfc[d*(a + b*Log[c*x^n])]/(2*x^2)

________________________________________________________________________________________

Rubi [A]  time = 0.188596, antiderivative size = 95, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.412, Rules used = {6402, 2278, 2274, 15, 2276, 2234, 2205} \[ -\frac{\left (c x^n\right )^{2/n} e^{\frac{2 a b d^2 n+1}{b^2 d^2 n^2}} \text{Erf}\left (\frac{a b d^2 n+b^2 d^2 n \log \left (c x^n\right )+1}{b d n}\right )}{2 x^2}-\frac{\text{Erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{2 x^2} \]

Antiderivative was successfully verified.

[In]

Int[Erfc[d*(a + b*Log[c*x^n])]/x^3,x]

[Out]

-(E^((1 + 2*a*b*d^2*n)/(b^2*d^2*n^2))*(c*x^n)^(2/n)*Erf[(1 + a*b*d^2*n + b^2*d^2*n*Log[c*x^n])/(b*d*n)])/(2*x^
2) - Erfc[d*(a + b*Log[c*x^n])]/(2*x^2)

Rule 6402

Int[Erfc[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[((e*x)^(m + 1)*Erf
c[d*(a + b*Log[c*x^n])])/(e*(m + 1)), x] + Dist[(2*b*d*n)/(Sqrt[Pi]*(m + 1)), Int[(e*x)^m/E^(d*(a + b*Log[c*x^
n]))^2, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]

Rule 2278

Int[(F_)^(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^2*(d_.))*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*F^(a^2*d
 + 2*a*b*d*Log[c*x^n] + b^2*d*Log[c*x^n]^2), x] /; FreeQ[{F, a, b, c, d, e, m, n}, x]

Rule 2274

Int[(u_.)*(F_)^((a_.)*(Log[z_]*(b_.) + (v_.))), x_Symbol] :> Int[u*F^(a*v)*z^(a*b*Log[F]), x] /; FreeQ[{F, a,
b}, x]

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 2276

Int[(F_)^(((a_.) + Log[(c_.)*(x_)^(n_.)]^2*(b_.))*(d_.))*((e_.)*(x_))^(m_.), x_Symbol] :> Dist[(e*x)^(m + 1)/(
e*n*(c*x^n)^((m + 1)/n)), Subst[Int[E^(a*d*Log[F] + ((m + 1)*x)/n + b*d*Log[F]*x^2), x], x, Log[c*x^n]], x] /;
 FreeQ[{F, a, b, c, d, e, m, n}, x]

Rule 2234

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[F^(a - b^2/(4*c)), Int[F^((b + 2*c*x)^2/(4*c))
, x], x] /; FreeQ[{F, a, b, c}, x]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{\text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^3} \, dx &=-\frac{\text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{2 x^2}-\frac{(b d n) \int \frac{e^{-d^2 \left (a+b \log \left (c x^n\right )\right )^2}}{x^3} \, dx}{\sqrt{\pi }}\\ &=-\frac{\text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{2 x^2}-\frac{(b d n) \int \frac{\exp \left (-a^2 d^2-2 a b d^2 \log \left (c x^n\right )-b^2 d^2 \log ^2\left (c x^n\right )\right )}{x^3} \, dx}{\sqrt{\pi }}\\ &=-\frac{\text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{2 x^2}-\frac{(b d n) \int \frac{e^{-a^2 d^2-b^2 d^2 \log ^2\left (c x^n\right )} \left (c x^n\right )^{-2 a b d^2}}{x^3} \, dx}{\sqrt{\pi }}\\ &=-\frac{\text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{2 x^2}-\frac{\left (b d n x^{2 a b d^2 n} \left (c x^n\right )^{-2 a b d^2}\right ) \int e^{-a^2 d^2-b^2 d^2 \log ^2\left (c x^n\right )} x^{-3-2 a b d^2 n} \, dx}{\sqrt{\pi }}\\ &=-\frac{\text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{2 x^2}-\frac{\left (b d \left (c x^n\right )^{-2 a b d^2-\frac{-2-2 a b d^2 n}{n}}\right ) \operatorname{Subst}\left (\int \exp \left (-a^2 d^2+\frac{\left (-2-2 a b d^2 n\right ) x}{n}-b^2 d^2 x^2\right ) \, dx,x,\log \left (c x^n\right )\right )}{\sqrt{\pi } x^2}\\ &=-\frac{\text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{2 x^2}-\frac{\left (b d e^{\frac{1+2 a b d^2 n}{b^2 d^2 n^2}} \left (c x^n\right )^{-2 a b d^2-\frac{-2-2 a b d^2 n}{n}}\right ) \operatorname{Subst}\left (\int \exp \left (-\frac{\left (\frac{-2-2 a b d^2 n}{n}-2 b^2 d^2 x\right )^2}{4 b^2 d^2}\right ) \, dx,x,\log \left (c x^n\right )\right )}{\sqrt{\pi } x^2}\\ &=-\frac{e^{\frac{1+2 a b d^2 n}{b^2 d^2 n^2}} \left (c x^n\right )^{2/n} \text{erf}\left (\frac{1+a b d^2 n+b^2 d^2 n \log \left (c x^n\right )}{b d n}\right )}{2 x^2}-\frac{\text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{2 x^2}\\ \end{align*}

Mathematica [A]  time = 0.260842, size = 79, normalized size = 0.83 \[ -\frac{\left (c x^n\right )^{2/n} e^{\frac{2 a b d^2 n+1}{b^2 d^2 n^2}} \text{Erf}\left (a d+b d \log \left (c x^n\right )+\frac{1}{b d n}\right )+\text{Erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{2 x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Erfc[d*(a + b*Log[c*x^n])]/x^3,x]

[Out]

-(E^((1 + 2*a*b*d^2*n)/(b^2*d^2*n^2))*(c*x^n)^(2/n)*Erf[a*d + 1/(b*d*n) + b*d*Log[c*x^n]] + Erfc[d*(a + b*Log[
c*x^n])])/(2*x^2)

________________________________________________________________________________________

Maple [F]  time = 0.243, size = 0, normalized size = 0. \begin{align*} \int{\frac{{\it erfc} \left ( d \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) \right ) }{{x}^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(erfc(d*(a+b*ln(c*x^n)))/x^3,x)

[Out]

int(erfc(d*(a+b*ln(c*x^n)))/x^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{erfc}\left ({\left (b \log \left (c x^{n}\right ) + a\right )} d\right )}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(erfc(d*(a+b*log(c*x^n)))/x^3,x, algorithm="maxima")

[Out]

integrate(erfc((b*log(c*x^n) + a)*d)/x^3, x)

________________________________________________________________________________________

Fricas [A]  time = 2.26407, size = 292, normalized size = 3.07 \begin{align*} -\frac{\sqrt{b^{2} d^{2} n^{2}} x^{2} \operatorname{erf}\left (\frac{{\left (b^{2} d^{2} n^{2} \log \left (x\right ) + b^{2} d^{2} n \log \left (c\right ) + a b d^{2} n + 1\right )} \sqrt{b^{2} d^{2} n^{2}}}{b^{2} d^{2} n^{2}}\right ) e^{\left (\frac{2 \, b^{2} d^{2} n \log \left (c\right ) + 2 \, a b d^{2} n + 1}{b^{2} d^{2} n^{2}}\right )} - \operatorname{erf}\left (b d \log \left (c x^{n}\right ) + a d\right ) + 1}{2 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(erfc(d*(a+b*log(c*x^n)))/x^3,x, algorithm="fricas")

[Out]

-1/2*(sqrt(b^2*d^2*n^2)*x^2*erf((b^2*d^2*n^2*log(x) + b^2*d^2*n*log(c) + a*b*d^2*n + 1)*sqrt(b^2*d^2*n^2)/(b^2
*d^2*n^2))*e^((2*b^2*d^2*n*log(c) + 2*a*b*d^2*n + 1)/(b^2*d^2*n^2)) - erf(b*d*log(c*x^n) + a*d) + 1)/x^2

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(erfc(d*(a+b*ln(c*x**n)))/x**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{erfc}\left ({\left (b \log \left (c x^{n}\right ) + a\right )} d\right )}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(erfc(d*(a+b*log(c*x^n)))/x^3,x, algorithm="giac")

[Out]

integrate(erfc((b*log(c*x^n) + a)*d)/x^3, x)