3.145 \(\int \text{Erfc}(d (a+b \log (c x^n))) \, dx\)

Optimal. Leaf size=92 \[ x \left (c x^n\right )^{-1/n} e^{\frac{1-4 a b d^2 n}{4 b^2 d^2 n^2}} \text{Erf}\left (\frac{2 a b d^2+2 b^2 d^2 \log \left (c x^n\right )-\frac{1}{n}}{2 b d}\right )+x \text{Erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right ) \]

[Out]

(E^((1 - 4*a*b*d^2*n)/(4*b^2*d^2*n^2))*x*Erf[(2*a*b*d^2 - n^(-1) + 2*b^2*d^2*Log[c*x^n])/(2*b*d)])/(c*x^n)^n^(
-1) + x*Erfc[d*(a + b*Log[c*x^n])]

________________________________________________________________________________________

Rubi [A]  time = 0.101062, antiderivative size = 92, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.538, Rules used = {6398, 2277, 2274, 15, 2276, 2234, 2205} \[ x \left (c x^n\right )^{-1/n} e^{\frac{1-4 a b d^2 n}{4 b^2 d^2 n^2}} \text{Erf}\left (\frac{2 a b d^2+2 b^2 d^2 \log \left (c x^n\right )-\frac{1}{n}}{2 b d}\right )+x \text{Erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right ) \]

Antiderivative was successfully verified.

[In]

Int[Erfc[d*(a + b*Log[c*x^n])],x]

[Out]

(E^((1 - 4*a*b*d^2*n)/(4*b^2*d^2*n^2))*x*Erf[(2*a*b*d^2 - n^(-1) + 2*b^2*d^2*Log[c*x^n])/(2*b*d)])/(c*x^n)^n^(
-1) + x*Erfc[d*(a + b*Log[c*x^n])]

Rule 6398

Int[Erfc[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*Erfc[d*(a + b*Log[c*x^n])], x] + Di
st[(2*b*d*n)/Sqrt[Pi], Int[1/E^(d*(a + b*Log[c*x^n]))^2, x], x] /; FreeQ[{a, b, c, d, n}, x]

Rule 2277

Int[(F_)^(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^2*(d_.)), x_Symbol] :> Int[F^(a^2*d + 2*a*b*d*Log[c*x^n] + b^2
*d*Log[c*x^n]^2), x] /; FreeQ[{F, a, b, c, d, n}, x]

Rule 2274

Int[(u_.)*(F_)^((a_.)*(Log[z_]*(b_.) + (v_.))), x_Symbol] :> Int[u*F^(a*v)*z^(a*b*Log[F]), x] /; FreeQ[{F, a,
b}, x]

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 2276

Int[(F_)^(((a_.) + Log[(c_.)*(x_)^(n_.)]^2*(b_.))*(d_.))*((e_.)*(x_))^(m_.), x_Symbol] :> Dist[(e*x)^(m + 1)/(
e*n*(c*x^n)^((m + 1)/n)), Subst[Int[E^(a*d*Log[F] + ((m + 1)*x)/n + b*d*Log[F]*x^2), x], x, Log[c*x^n]], x] /;
 FreeQ[{F, a, b, c, d, e, m, n}, x]

Rule 2234

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[F^(a - b^2/(4*c)), Int[F^((b + 2*c*x)^2/(4*c))
, x], x] /; FreeQ[{F, a, b, c}, x]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int \text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx &=x \text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )+\frac{(2 b d n) \int e^{-d^2 \left (a+b \log \left (c x^n\right )\right )^2} \, dx}{\sqrt{\pi }}\\ &=x \text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )+\frac{(2 b d n) \int \exp \left (-a^2 d^2-2 a b d^2 \log \left (c x^n\right )-b^2 d^2 \log ^2\left (c x^n\right )\right ) \, dx}{\sqrt{\pi }}\\ &=x \text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )+\frac{(2 b d n) \int e^{-a^2 d^2-b^2 d^2 \log ^2\left (c x^n\right )} \left (c x^n\right )^{-2 a b d^2} \, dx}{\sqrt{\pi }}\\ &=x \text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )+\frac{\left (2 b d n x^{2 a b d^2 n} \left (c x^n\right )^{-2 a b d^2}\right ) \int e^{-a^2 d^2-b^2 d^2 \log ^2\left (c x^n\right )} x^{-2 a b d^2 n} \, dx}{\sqrt{\pi }}\\ &=x \text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )+\frac{\left (2 b d x \left (c x^n\right )^{-2 a b d^2-\frac{1-2 a b d^2 n}{n}}\right ) \operatorname{Subst}\left (\int \exp \left (-a^2 d^2+\frac{\left (1-2 a b d^2 n\right ) x}{n}-b^2 d^2 x^2\right ) \, dx,x,\log \left (c x^n\right )\right )}{\sqrt{\pi }}\\ &=x \text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )+\frac{\left (2 b d e^{\frac{1-4 a b d^2 n}{4 b^2 d^2 n^2}} x \left (c x^n\right )^{-2 a b d^2-\frac{1-2 a b d^2 n}{n}}\right ) \operatorname{Subst}\left (\int \exp \left (-\frac{\left (\frac{1-2 a b d^2 n}{n}-2 b^2 d^2 x\right )^2}{4 b^2 d^2}\right ) \, dx,x,\log \left (c x^n\right )\right )}{\sqrt{\pi }}\\ &=e^{\frac{1-4 a b d^2 n}{4 b^2 d^2 n^2}} x \left (c x^n\right )^{-1/n} \text{erf}\left (\frac{2 a b d^2-\frac{1}{n}+2 b^2 d^2 \log \left (c x^n\right )}{2 b d}\right )+x \text{erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right )\\ \end{align*}

Mathematica [A]  time = 0.239139, size = 77, normalized size = 0.84 \[ x e^{\frac{\frac{\frac{1}{d^2}-4 a b n}{b^2}-4 n \log \left (c x^n\right )}{4 n^2}} \text{Erf}\left (a d+b d \log \left (c x^n\right )-\frac{1}{2 b d n}\right )+x \text{Erfc}\left (d \left (a+b \log \left (c x^n\right )\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Erfc[d*(a + b*Log[c*x^n])],x]

[Out]

E^(((d^(-2) - 4*a*b*n)/b^2 - 4*n*Log[c*x^n])/(4*n^2))*x*Erf[a*d - 1/(2*b*d*n) + b*d*Log[c*x^n]] + x*Erfc[d*(a
+ b*Log[c*x^n])]

________________________________________________________________________________________

Maple [F]  time = 0.224, size = 0, normalized size = 0. \begin{align*} \int{\it erfc} \left ( d \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(erfc(d*(a+b*ln(c*x^n))),x)

[Out]

int(erfc(d*(a+b*ln(c*x^n))),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \operatorname{erfc}\left ({\left (b \log \left (c x^{n}\right ) + a\right )} d\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(erfc(d*(a+b*log(c*x^n))),x, algorithm="maxima")

[Out]

integrate(erfc((b*log(c*x^n) + a)*d), x)

________________________________________________________________________________________

Fricas [A]  time = 2.20213, size = 294, normalized size = 3.2 \begin{align*} \sqrt{b^{2} d^{2} n^{2}} \operatorname{erf}\left (\frac{{\left (2 \, b^{2} d^{2} n^{2} \log \left (x\right ) + 2 \, b^{2} d^{2} n \log \left (c\right ) + 2 \, a b d^{2} n - 1\right )} \sqrt{b^{2} d^{2} n^{2}}}{2 \, b^{2} d^{2} n^{2}}\right ) e^{\left (-\frac{4 \, b^{2} d^{2} n \log \left (c\right ) + 4 \, a b d^{2} n - 1}{4 \, b^{2} d^{2} n^{2}}\right )} - x \operatorname{erf}\left (b d \log \left (c x^{n}\right ) + a d\right ) + x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(erfc(d*(a+b*log(c*x^n))),x, algorithm="fricas")

[Out]

sqrt(b^2*d^2*n^2)*erf(1/2*(2*b^2*d^2*n^2*log(x) + 2*b^2*d^2*n*log(c) + 2*a*b*d^2*n - 1)*sqrt(b^2*d^2*n^2)/(b^2
*d^2*n^2))*e^(-1/4*(4*b^2*d^2*n*log(c) + 4*a*b*d^2*n - 1)/(b^2*d^2*n^2)) - x*erf(b*d*log(c*x^n) + a*d) + x

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \operatorname{erfc}{\left (d \left (a + b \log{\left (c x^{n} \right )}\right ) \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(erfc(d*(a+b*ln(c*x**n))),x)

[Out]

Integral(erfc(d*(a + b*log(c*x**n))), x)

________________________________________________________________________________________

Giac [A]  time = 1.41814, size = 111, normalized size = 1.21 \begin{align*} -x \operatorname{erf}\left (b d n \log \left (x\right ) + b d \log \left (c\right ) + a d\right ) + x - \frac{\operatorname{erf}\left (-b d n \log \left (x\right ) - b d \log \left (c\right ) - a d + \frac{1}{2 \, b d n}\right ) e^{\left (-\frac{a}{b n} + \frac{1}{4 \, b^{2} d^{2} n^{2}}\right )}}{c^{\left (\frac{1}{n}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(erfc(d*(a+b*log(c*x^n))),x, algorithm="giac")

[Out]

-x*erf(b*d*n*log(x) + b*d*log(c) + a*d) + x - erf(-b*d*n*log(x) - b*d*log(c) - a*d + 1/2/(b*d*n))*e^(-a/(b*n)
+ 1/4/(b^2*d^2*n^2))/c^(1/n)