3.81 \(\int \frac{e^{-\text{sech}^{-1}(a x)}}{x} \, dx\)

Optimal. Leaf size=46 \[ -\frac{2}{\sqrt{\frac{1-a x}{a x+1}}+1}-2 \tan ^{-1}\left (\sqrt{\frac{1-a x}{a x+1}}\right ) \]

[Out]

-2/(1 + Sqrt[(1 - a*x)/(1 + a*x)]) - 2*ArcTan[Sqrt[(1 - a*x)/(1 + a*x)]]

________________________________________________________________________________________

Rubi [A]  time = 0.401255, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {6337, 801, 203} \[ -\frac{2}{\sqrt{\frac{1-a x}{a x+1}}+1}-2 \tan ^{-1}\left (\sqrt{\frac{1-a x}{a x+1}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/(E^ArcSech[a*x]*x),x]

[Out]

-2/(1 + Sqrt[(1 - a*x)/(1 + a*x)]) - 2*ArcTan[Sqrt[(1 - a*x)/(1 + a*x)]]

Rule 6337

Int[E^(ArcSech[u_]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*(1/u + Sqrt[(1 - u)/(1 + u)] + (1*Sqrt[(1 - u)/(1 +
 u)])/u)^n, x] /; FreeQ[m, x] && IntegerQ[n]

Rule 801

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(
(d + e*x)^m*(f + g*x))/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && Integer
Q[m]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{-\text{sech}^{-1}(a x)}}{x} \, dx &=\int \frac{1}{x \left (\frac{1}{a x}+\sqrt{\frac{1-a x}{1+a x}}+\frac{\sqrt{\frac{1-a x}{1+a x}}}{a x}\right )} \, dx\\ &=-\left (4 \operatorname{Subst}\left (\int \frac{x}{(1+x)^2 \left (1+x^2\right )} \, dx,x,\sqrt{\frac{1-a x}{1+a x}}\right )\right )\\ &=-\left (4 \operatorname{Subst}\left (\int \left (-\frac{1}{2 (1+x)^2}+\frac{1}{2 \left (1+x^2\right )}\right ) \, dx,x,\sqrt{\frac{1-a x}{1+a x}}\right )\right )\\ &=-\frac{2}{1+\sqrt{\frac{1-a x}{1+a x}}}-2 \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\sqrt{\frac{1-a x}{1+a x}}\right )\\ &=-\frac{2}{1+\sqrt{\frac{1-a x}{1+a x}}}-2 \tan ^{-1}\left (\sqrt{\frac{1-a x}{1+a x}}\right )\\ \end{align*}

Mathematica [C]  time = 0.0358713, size = 74, normalized size = 1.61 \[ \sqrt{\frac{1-a x}{a x+1}} \left (\frac{1}{a x}+1\right )-\frac{1}{a x}+i \log \left (2 \sqrt{\frac{1-a x}{a x+1}} (a x+1)-2 i a x\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(E^ArcSech[a*x]*x),x]

[Out]

-(1/(a*x)) + (1 + 1/(a*x))*Sqrt[(1 - a*x)/(1 + a*x)] + I*Log[(-2*I)*a*x + 2*Sqrt[(1 - a*x)/(1 + a*x)]*(1 + a*x
)]

________________________________________________________________________________________

Maple [F]  time = 180., size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{x} \left ({\frac{1}{ax}}+\sqrt{{\frac{1}{ax}}-1}\sqrt{1+{\frac{1}{ax}}} \right ) ^{-1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1/a/x+(1/a/x-1)^(1/2)*(1+1/a/x)^(1/2))/x,x)

[Out]

int(1/(1/a/x+(1/a/x-1)^(1/2)*(1+1/a/x)^(1/2))/x,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x{\left (\sqrt{\frac{1}{a x} + 1} \sqrt{\frac{1}{a x} - 1} + \frac{1}{a x}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1/a/x+(1/a/x-1)^(1/2)*(1+1/a/x)^(1/2))/x,x, algorithm="maxima")

[Out]

integrate(1/(x*(sqrt(1/(a*x) + 1)*sqrt(1/(a*x) - 1) + 1/(a*x))), x)

________________________________________________________________________________________

Fricas [A]  time = 2.30327, size = 163, normalized size = 3.54 \begin{align*} \frac{a x \sqrt{\frac{a x + 1}{a x}} \sqrt{-\frac{a x - 1}{a x}} - a x \arctan \left (\sqrt{\frac{a x + 1}{a x}} \sqrt{-\frac{a x - 1}{a x}}\right ) - 1}{a x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1/a/x+(1/a/x-1)^(1/2)*(1+1/a/x)^(1/2))/x,x, algorithm="fricas")

[Out]

(a*x*sqrt((a*x + 1)/(a*x))*sqrt(-(a*x - 1)/(a*x)) - a*x*arctan(sqrt((a*x + 1)/(a*x))*sqrt(-(a*x - 1)/(a*x))) -
 1)/(a*x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \int \frac{1}{a x \sqrt{-1 + \frac{1}{a x}} \sqrt{1 + \frac{1}{a x}} + 1}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1/a/x+(1/a/x-1)**(1/2)*(1+1/a/x)**(1/2))/x,x)

[Out]

a*Integral(1/(a*x*sqrt(-1 + 1/(a*x))*sqrt(1 + 1/(a*x)) + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x{\left (\sqrt{\frac{1}{a x} + 1} \sqrt{\frac{1}{a x} - 1} + \frac{1}{a x}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1/a/x+(1/a/x-1)^(1/2)*(1+1/a/x)^(1/2))/x,x, algorithm="giac")

[Out]

integrate(1/(x*(sqrt(1/(a*x) + 1)*sqrt(1/(a*x) - 1) + 1/(a*x))), x)