3.921 \(\int e^{-3 \coth ^{-1}(a x)} \sqrt{c-\frac{c}{a^2 x^2}} x \, dx\)

Optimal. Leaf size=112 \[ \frac{x^2 \sqrt{c-\frac{c}{a^2 x^2}}}{2 \sqrt{1-\frac{1}{a^2 x^2}}}-\frac{3 x \sqrt{c-\frac{c}{a^2 x^2}}}{a \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{4 \sqrt{c-\frac{c}{a^2 x^2}} \log (a x+1)}{a^2 \sqrt{1-\frac{1}{a^2 x^2}}} \]

[Out]

(-3*Sqrt[c - c/(a^2*x^2)]*x)/(a*Sqrt[1 - 1/(a^2*x^2)]) + (Sqrt[c - c/(a^2*x^2)]*x^2)/(2*Sqrt[1 - 1/(a^2*x^2)])
 + (4*Sqrt[c - c/(a^2*x^2)]*Log[1 + a*x])/(a^2*Sqrt[1 - 1/(a^2*x^2)])

________________________________________________________________________________________

Rubi [A]  time = 0.188849, antiderivative size = 112, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {6197, 6193, 43} \[ \frac{x^2 \sqrt{c-\frac{c}{a^2 x^2}}}{2 \sqrt{1-\frac{1}{a^2 x^2}}}-\frac{3 x \sqrt{c-\frac{c}{a^2 x^2}}}{a \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{4 \sqrt{c-\frac{c}{a^2 x^2}} \log (a x+1)}{a^2 \sqrt{1-\frac{1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[c - c/(a^2*x^2)]*x)/E^(3*ArcCoth[a*x]),x]

[Out]

(-3*Sqrt[c - c/(a^2*x^2)]*x)/(a*Sqrt[1 - 1/(a^2*x^2)]) + (Sqrt[c - c/(a^2*x^2)]*x^2)/(2*Sqrt[1 - 1/(a^2*x^2)])
 + (4*Sqrt[c - c/(a^2*x^2)]*Log[1 + a*x])/(a^2*Sqrt[1 - 1/(a^2*x^2)])

Rule 6197

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d/x^2
)^FracPart[p])/(1 - 1/(a^2*x^2))^FracPart[p], Int[u*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a
, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !IntegerQ[n/2] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int e^{-3 \coth ^{-1}(a x)} \sqrt{c-\frac{c}{a^2 x^2}} x \, dx &=\frac{\sqrt{c-\frac{c}{a^2 x^2}} \int e^{-3 \coth ^{-1}(a x)} \sqrt{1-\frac{1}{a^2 x^2}} x \, dx}{\sqrt{1-\frac{1}{a^2 x^2}}}\\ &=\frac{\sqrt{c-\frac{c}{a^2 x^2}} \int \frac{(-1+a x)^2}{1+a x} \, dx}{a \sqrt{1-\frac{1}{a^2 x^2}}}\\ &=\frac{\sqrt{c-\frac{c}{a^2 x^2}} \int \left (-3+a x+\frac{4}{1+a x}\right ) \, dx}{a \sqrt{1-\frac{1}{a^2 x^2}}}\\ &=-\frac{3 \sqrt{c-\frac{c}{a^2 x^2}} x}{a \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{\sqrt{c-\frac{c}{a^2 x^2}} x^2}{2 \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{4 \sqrt{c-\frac{c}{a^2 x^2}} \log (1+a x)}{a^2 \sqrt{1-\frac{1}{a^2 x^2}}}\\ \end{align*}

Mathematica [A]  time = 0.0303431, size = 53, normalized size = 0.47 \[ \frac{\sqrt{c-\frac{c}{a^2 x^2}} (a x (a x-6)+8 \log (a x+1))}{2 a^2 \sqrt{1-\frac{1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[c - c/(a^2*x^2)]*x)/E^(3*ArcCoth[a*x]),x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*(a*x*(-6 + a*x) + 8*Log[1 + a*x]))/(2*a^2*Sqrt[1 - 1/(a^2*x^2)])

________________________________________________________________________________________

Maple [A]  time = 0.224, size = 73, normalized size = 0.7 \begin{align*}{\frac{ \left ({a}^{2}{x}^{2}-6\,ax+8\,\ln \left ( ax+1 \right ) \right ) x \left ( ax+1 \right ) }{2\,a \left ( ax-1 \right ) ^{2}}\sqrt{{\frac{c \left ({a}^{2}{x}^{2}-1 \right ) }{{a}^{2}{x}^{2}}}} \left ({\frac{ax-1}{ax+1}} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c-c/a^2/x^2)^(1/2)*((a*x-1)/(a*x+1))^(3/2),x)

[Out]

1/2*(a^2*x^2-6*a*x+8*ln(a*x+1))*x*(c*(a^2*x^2-1)/a^2/x^2)^(1/2)*(a*x+1)*((a*x-1)/(a*x+1))^(3/2)/a/(a*x-1)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c - \frac{c}{a^{2} x^{2}}} x \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c-c/a^2/x^2)^(1/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a^2*x^2))*x*((a*x - 1)/(a*x + 1))^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.69876, size = 76, normalized size = 0.68 \begin{align*} \frac{{\left (a^{2} x^{2} - 6 \, a x + 8 \, \log \left (a x + 1\right )\right )} \sqrt{a^{2} c}}{2 \, a^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c-c/a^2/x^2)^(1/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="fricas")

[Out]

1/2*(a^2*x^2 - 6*a*x + 8*log(a*x + 1))*sqrt(a^2*c)/a^3

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c-c/a**2/x**2)**(1/2)*((a*x-1)/(a*x+1))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c - \frac{c}{a^{2} x^{2}}} x \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c-c/a^2/x^2)^(1/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(c - c/(a^2*x^2))*x*((a*x - 1)/(a*x + 1))^(3/2), x)